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AFIT/GAP/ENP/955-01

Abstract

Automatic detection of time-critical mobile targets using spectral-only infrared
radiance data is explored. A quantification of the probability of detection, false alarm
rate, and total error rate associated with this detection process is provided. A set
of classification features is developed for the spectral data, and these features are
utilized in a Bayesian classifier singly and in combination to provide target detection.
The results of this processing are presented and sensitivity of the class separability
to target set, target configuration, diurnal variations, mean contrast, and ambient
temperature estimation errors is explored. This work introduces the concept of
atmospheric normalization of classification features, in which feature values are nor-
malized using an estimate of the ambient temperature surrounding the target being
observed and applying the Planck radiation law with those estimates. This technique
is demonstrated to reduce the total error rate associated with classification processing
to less than one-fourth of that observed using non-normalized features. Classification
testing of spectral field measurements made on an array of U.S. and foreign military
assets reveal a total error rate near 5% with a 95% probability of detection and a
concurrent false alarm rate of 4% when a single classification feature is employed.
Multiple feature classification on the same data yields detection probabilities near
97% with a concurrent false alarm rate of 2.5%. Sensitivity analysis indicates that
the probability of detection is reduced to 70-75% in the hours preceding daylight,
and that for the total error rate to be less than 10%, the target-to-background mean
contrast must be greater than 0.1. Analysis of the atmospheric normalization tech-
nique reveals that in order to keep the total error rate less than 10%, the ambient

temperature must be estimated with less than 3K absolute accuracy.




NON-IMAGING INFRARED SPECTRAL TARGET DETECTION

L. Introduction

1.1 Research Motivation

The results of air campaigns conducted during the Persian Gulf War empha-
sized the relative difficulty of locating and prosecuting time-critical mobile targets
(CMTs). Typical CMTs include ground vehicles such as missile launchers, theater
ballistic missiles, mobile cruise missiles, Scuds, anti-aircraft vehicles, artillery, and
mobile command posts. Since these targets are highly mobile and have the capability
of being relocated within a few hours, wide-area surveillance must be conducted in
order to establish estimates of their locations. Furthermore, since these initial esti-
mates may quickly become outdated, the search process must be repeated frequently.
The requirements for wide-area surveillance and large-area acquisition dictate that
the processes used to locate and prosecute these CMTs must be automated to meet

mission time-lines.

While much research has been accomplished in the area of automated target
detection, recognition, and identification (ATD/R/I), high probabilities of detec-
tion (recognition or identification) and low false alarm rates have often come about
through the use of high spatial resolution remote sensors. High spatial resolution
results in lower area search rates for the sensor and longer image processing time-
lines. These features are inconsistent with the time-lines and search areas required

to locate and prosecute CMTs.

The paradigm of directed vision has been proposed to provide for automated
CMT location and prosecution within the relevant time-lines. In this paradigm, a

system with a fast scan rate carries out a coarse classification (e.g. target vs. non-



target). The detection output (declaration of a target detection) is used as a cue to
a system that can perform classification at a higher level (e.g. tank vs. truck). The
task of the first system is to provide for a high probability of detection with a false
alarm rate determined by the ability of the second system to reject these false alarms
while keeping up with the cuing rate. The task of the second system is to examine
the cues received from the first and perform higher level discrimination functions,
thus rejecting false alarms passed to it. The net effect of the two systems working
in tandem is to yield high probabilities of detection and low false alarms rates in a

time-line that facilitates CMT location and prosecution.

A multispectral infrared sensing system has been proposed as a candidate for
use in the directed vision paradigm. With this type of sensor, the target signature
is resolved spectrally and the spatial resolution is reduced. With reduced spatial
resolution, the area search rate of such a system is consequently increased. At the
same time, resolution of the signature in the spectral domain emphasizes material
composition of the observed target. The spectral signature is therefore ideally suited
for the detection phase in the directed vision paradigm as it applies to the location

and prosecution of CMTs.

The ability to accurately distinguish target from non-target using spectral data
shows great promise towards increasing area search rates and decreasing processing
time-lines. While target detectability has been assessed using spectral data, detection
capability and associated error rates have yet to be objectively quantified on a set of
infrared spectral measurements. Without proper quantification, the assumed benefit

of a spectral sensor remains speculative.

1.2  Problem Statement

This thesis research focuses on quantifying the probability of target detection,
false alarms rate, and total error rate that may be achieved by performing automated

classification processing on non-imaging infrared spectral target observation data.




1.8 Current Knowledge

The problem of automating the target detection process and quantifying the
performance of that process on a set of measurements falls under the broad category
of pattern recognition. As such, the pattern recognition theory and methods that are
employed routinely with image data may be applied fully to the non-imaging spectral-
only problem. Ultimately, the utility of the automated process that is developed
must be tested against a set of measurement data and the results of that processing

(classifications) must be compared to desired results (ground truth).

In research currently being carried out by the Wright Laboratory Avionics Di-
rectorate (WL/AARI), Naval Research Laboratory (NRL), and the Environmental
Research Institute of Michigan (ERIM), the target detection paradigm focuses on
exploiting the empirically-observed fact that natural objects or background (tree
canopy, grass, etc. ) exhibit a high degree of correlation between spectral radi-
ance measurements made at certain wavelength pairs (A1, ;). Man-made objects
or targets (tanks, trucks, etc. ) tend to lic farther off the background correla-
tion axis (19). Target and non-target (background) observations are assumed to
be normally-distributed when projected onto an axis orthogonal to the background
correlation axis, subject to certain requirements on the degree of background corre-
lation. From the observed distributions, a signal-to-clutter ratio (SCR) is measured.
Target detectability is then assessed through the classical radar detection model,
where an analogy is drawn between the computed SCR and the radar signal-to-noise
ratio (SNR). In this detection paradigm, efforts are directed toward finding wave-
length pairs producing an SCR commensurate with target detection and false alarm

rates that meet the program goals.

In 1994, Thomas (16) reported that for the target set he examined, higher back-
ground correlation existed between pairs in the long-wave infrared (LWIR) than in
the mid-wave infrared (MWIR) for correlation levels (p) of interest, p > 0.99. Addi-
tionally, he found that LWIR-MWIR band pairs rarely resulted in high background




correlation. Furthermore, Thomas established a metric which he called SCORE
that found more stable band pairs for target detectability estimation than could
be obtained by simply calculating SCR values for the same observations. This fact

indicates that the observed SCR may not fully parameterize target detectability.

Although the research currently underway has established that targets are
detectable in highly-cluttered backgrounds by exploiting background spectral corre-
lation, the detectability must be taken with proper caveat, since the target detec-
tion probability and false alarms rates are based upon modeled detector behavior as
opposed to measured detector behavior. The research accomplished in this thesis es-
tablishes error rates through the design, implementation, and testing of an alternate
detection paradigm and quantifies those rates by objective comparison of detector
output with known truth, thus avoiding assumptions made in attempting to model

the detection process.

To accomplish the task of quantifying the performance of a non-imaging in-
frared spectral target detection system, the work draws upon a wide range of radio-
metric theory established in the past century as well as statistical classification theory
and error rate evaluation techniques developed over the past several decades. The
key ideas behind this knowledge are presented here, with a more detailed treatment

reserved for Chapter IL.

1.3.1 Radiometric Theory. The problem of measuring the energy contained
in optical radiation fields is the fundamental issue that radiometric theory confronts.
Radiometry in its present form deals only with incoherent radiation that follows the
laws of geometric optics. In the study of radiometry, certain radiometric quantities
have been established. Chief among these radiometric quantities is that of spectral
radiance, which is defined to be the power emitted from a source per unit area per

unit solid angle at a particular wavelength. This quantity is given the symbol L.




Of particular interest (both practical and historical) in radiometry is the study
of the spectral radiance emitted by a so-called blackbody (1). A blackbody is a hypo-
thetical body that absorbs all radiation incident upon it. While a true blackbody is
a purely imaginary entity, many common sources behave in a fashion similar to an
ideal blackbody. A small hole which is made in an enclosure maintained at a uniform
temperature closely approximates the behavior of a blackbody (1:28). Additionally,
most physical objects not undergoing other emission processes exhibit emission prop-
erties similar to that of a blackbody. The correct theoretical expression for blackbody
spectral radiance was discovered by Planck in 1900 (1:51). This distribution, usu-
ally referred to as the Planck radiation law, is presented and discussed in detail in

Chapter II.

1.3.2 Feature Spaces and Statistical Classification.  Given a signal (image,
spectrum, etc. ), we may define and measure some feature of that signal. This
feature may be either data taken directly from the signal, or it may be derived or
calculated from a part of, or the entire signal. Features may assume any form, with
the only restriction being that the method of measuring that feature is consistent
for all signals of the same type, regardless of the class to which a signal belongs. For
example, in this research, the same method must be used to measure a feature value
from a spectrum whether that spectrum comes from a target or from a non-target.
If we construct N such features (each different), then we define an N-dimensional

space into which each of our signals is mapped.

The mapping of signals into feature space is done in order that we may de-
termine to which class of signals the signal of interest belongs. To do this, a set of
discriminant functions defined in the feature space must be used. These discriminant
functions tell us the probability that the observation in question belongs to a par-
ticular class given its location in feature space. Our classification of the observation

is based upon these probabilities. These concepts are fundamental to the statistical




classification techniques that will be discussed fully in Chapter II and will form the

basis of our target detection process.

1.3.3 FError Rate Estimation Techniques.  The standard metric for assess-
ing performance in any statistical classification problem is the minimum average
probability of error or the Bayes error rate. In the target detection problem, the
Bayes error rate is composed of both false alarms and missed detections. Given a
feature space and a set of observations, a unique value for the Bayes error rate exists
as the minimum error rate at which any classifier in that feature space may operate.
Put another way, the Bayes error rate represents a limit in the separability that may
be achieved between classes in a given feature space. Thus, if the Bayes error rate
measured for a set of observations exceeds the error that is tolerable, then a new
feature space must be developed in which class separability is increased. Changing

the type of classifier used will not change the Bayes error rate.

In practice, the Bayes error rate is measured by first estimating the class-
conditional probability for each class at each value in the feature space. These
values are used in the so-called Bayesian decision rule, with the error resulting from
this decision process being taken as an estimate of the Bayes error rate. The issue
relevant in whether this error rate is valid lies in the ability to estimate the class-
conditional probabilities. This estimate may be made either through parametric
or non-parametric techniques. Non-parametric techniques are usually favored over
parametric techniques, as they make no assumptions as to the form of the class-
conditional distributions. These techniques do, however, require training data that
is representative of the data expected during testing. Issues surrounding error rate

estimation are discussed in greater depth in Chapter II and Chapter III.




1.4 Spectral Infrared Database

Under the Joint Multispectral Sensor Program (JMSP), which is currently
managed by WL/AARI, several data collections of infrared spectral radiance mea-
surements (3-14 gm) have been made. Included in the current JMSP database are
measurements conducted at Wright-Patterson AFB in Ohio, Redstone Arsenal in
Alabama, White Sands Missile Range in New Mexico, and Camp Grayling in Michi-
gan. In all of these data collection efforts, measurements were made on various target
configurations and backgrounds (non-target observations) throughout 24 hour peri-
ods over the course of several days or weeks. Each collection of data is organized
into ‘experiments’ which consist of a number of spectra observed from each of several
targets and non-targets. Overall, during each of these collection efforts, thousands
of target and non-target observations were recorded and were available for use in

this research. This data is discussed in greater detail in Chapter III.

1.5 Scope

In this thesis, a set of classification features is developed for the infrared spec-
tral radiance data, and the performance of these features is evaluated both separately
and in combination. Class-conditional probability distribution functions (PDFs) are
estimated using the JMSP data and the classification feature set. A classifier em-
ploying the Bayesian decision rule has been designed and implemented to work with
these PDFs. Testing of the classifier is focused on a set of 137 experiments conducted
over a five-day period in June 1994 at Wright-Patterson AFB, Ohio consisting of over
2,700 target and 1,500 non-target observations. Detection performance sensitivity
to target set, target configuration, observation time, mean contrast, and ambient
temperature estimation is quantified. Estimates of the Bayes error rate associated
with classification processing are made non-parametrically using resubstitution and

leave-one-out testing techniques.




1.6  Approach

The approach taken to assess detection performance for the non-imaging in-
frared spectral radiance data has several steps. First, a set of classification features is
developed. These features are both direct and derived features of the spectral obser-
vations. A Bayesian classifier is implemented to work with single features, multiple
independent features, and two-dimensional feature spaces in both resubstitution and

leave-one-out testing.

With the established feature set and classification algorithm, error rates for the
single feature class estimation are quantified and the features are ranked accordingly.
Next, performance improvement using multiple features that are assumed to be
independent is quantified, focusing on the features from the set that exhibit the top
single feature performance. Finally, detection performance is quantified using two-
dimensional feature spaces constructed from the top-performing single features. In
all cases, the Bayes error rate is estimated using several non-parametric estimation

methods.

The sensitivity of the established detection performance to variations in tar-
get set, target configuration, and observation time is explored and quantified by
considering observations taken with varying targets present, in varying test configu-
rations, and at different times. Observation conditions and the associated detection
performance are quantified as a function of mean contrast. Finally, the detection
performance sensitivity will be assessed for the top-performing feature as a function
of the sensor’s ability to determine the ambient radiative temperature at the time of

observation.

1.7 Research Objectives

The research objectives to be accomplished in this thesis are as follows:




[y

. Develop a set of classification features that may be used individually, in com-
bination, or to define a two-dimensional feature space for the spectral infrared

data.

[N

. Design and implement a classifier employing the Bayesian decision rule that
makes use of the classification features developed either individually, in com-

bination, or with a two-dimensional feature space.

3. Test the classifier on a set of spectral observations to establish performance
levels (quantified by standard metrics) that may be achieved with a single

feature, multiple features, or a two-dimensional feature space.

4. Establish the Bayes error rate for each of the tests using non-parametric esti-

mation techniques.

5. Characterize the sensitivity of the feature set and classifier to variations in
target set, target configuration, diurnal conditions, mean contrast, and ambient

temperature estimation.

1.8 Key Results
The theory and methods presented in this thesis will serve as a foundation

upon which the following key results are built:

e Spectral-only data may be used to provide adequately for the detection of time-

critical mobile targets, with probabilities of detection of 95% and greater and

corresponding false alarm rates between 2.5-4% being demonstrated on field

measurements.

o Atmospheric normalization of classification features, a novel invention of this
research, is demonstrated to significantly increase class separability between

target and non-target observations.

o While high levels of detection performance can be realized in the daylight hours,

early morning observations yield lower probabilities of detection (70-75%) as




non-operating targets loose contrast during this period. Obscuration of targets
by tree canopy places the targets in a radiant environment where contrast is

lowered and similarly reduces detection performance.

e Mean contrast sensitivity measurements reveal that in order for the total error
rate to be less than 10%, targets must exhibit a mean contrast of 0.1 or greater

as compared to the surrounding background.

1.9 Thesis Organization

The organization of the remainder of this thesis is as follows: Chapter II will
discuss the theory pertinent to this research under the topics of radiometry, spectral
correlation, and statistical classification. Chapter III will describe the methodology
used throughout the research, offering a characterization of the testing data, def-
inition and physical interpretation of the classification features, description of the
class-conditional distribution function generation, classification testing, Bayes error
rate estimation, and standardized performance metrics. Chapter IV will be used to
present and analyze the results obtained in this research, and those results will be

summarized and conclusions will be drawn from them in Chapter V.

1.10 Summary

In order to assess the capability of a non-imaging spectral infrared system in the
directed vision concept to detect time-critical mobile targets, detection processing
must be carried out and the results of this processing must be compared to the
desired output to characterize performance in terms of standardized metrics, without
invoking modeled behavior in so doing. The feature set, classification algorithm, and
software developed here will permit this detection processing to be carried out on
infrared spectral data collected as part of the Joint Multispectral Sensor Program.

The Bayes error rate of the established feature set and testing data will be quantified.

10




Capability will be further assessed by means of sensitivity analysis, exploring the

effect of several variables upon a set of standardized performance metrics.

11



II. Theory
2.1 Introduction

The work accomplished in this thesis is well-grounded in a wide body of knowl-
edge that has come to light over the past century. This theory falls into two broad
areas: radiometry and statistical classification. While these areas are not formally
related and possess no deep-rooted interconnections, the synthesis of this research
effort lies in the intersection of the two fields. Thus, in this discussion, focus is given
only to the particular aspects of each area that pertain directly to the problem at

hand.

e From the field of radiometry, the following topics are discussed:

1. pertinent radiometric quantities; their meaning and units of measurement
2. blackbody radiation; its character and analytic form

e From the field of statistical classification, the following topics are discussed:

1. feature spaces and discriminant functions
2. probability and Bayesian decision theory

3. non-parametric Bayes error estimation

2.2 Radiometry

As mentioned in section 1.3.1, radiometry concerns itself with measuring the
energy content of optical radiation fields and determining how this energy flows
through optical systems (1:13). Although optical radiation can be classified as fully
coherent, partially coherent, or incoherent, radiometry usually treats only incoher-
ent radiation. Treatment of fully coherent radiation requires knowledge of the field
components and the associated Poynting vector. For this work, however, knowl-

edge of the incoherent properties of optical radiation will suffice, as this research

12




deals specifically with the radiometry of thermal sources, which may be viewed as
emitting essentially incoherent radiation. By calling this radiation incoherent, it is
assumed that the amplitude and phase of its individual radiators vary randomly and

independently in space.

2.2.1 Radiometric Quantities.  In order to discuss the radiometric proper-
ties of a source, it is necessary to first define the properties of interest. Although the
definitions are somewhat arbitrary, the convention of Boyd (1) is followed through-
out, as his convention is based upon common usage by those who work in the field.
While a large number of these radiometric quantities may be defined, only those

used in this research are presented here.

The total energy contained in a radiation field is called the radiant energy and
is given the symbol @, having units of joules (J). The time rate of change of this
energy d@)/dt is referred to as the radiant flux ®, which has the units of J/s or watts
(W). With this definition, we may thus define another quantity called radiance, L,
as the flux per unit projected area per unit solid angle leaving a source. Radiance
has units of W/m?2-sr. Mathematically, radiance is defined as:

d’®

__v® 1
L=ga, a0 (1)

While the measure of radiance as defined above may be adequate for some
sources, it is often instructive to consider the variation of this quantity as a function
of frequency or wavelength, its spectral composition. Thus, it is necessary to work
with spectral radiance Ly, which is defined as the radiant flux per unit projected area
per unit solid angle per unit wavelength and has units of W/m?-sr-m for wavelengths
measured in meters. Mathematically, spectral radiance is defined as:

d*®

L= Ty 2)
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Radiance and spectral radiance are therefore related simply by:
L= / " Lyd (3)
0

In common practice, spectral radiance is often expressed in units other than those
cited above, as typical fluxes are more easily measured in micro-watts, receiver areas
are measured in square centimeters, and wavelengths are measured in microns. Thus,
spectral radiance is often reported in units of so-called micro-flicks (uflick) which
are defined as:

luflick = W e (4)

cem?-str-pym m2-str-m
In this thesis, the pflick will be adopted as the standard unit for measurements of

spectral radiance.

2.2.2 Blackbody Radiation. As discussed in section 1.3.1, a blackbody is
a hypothetical body that absorbs all radiation incident upon it, thus, it is black
in the normal sense of the word. While the concept of a blackbody represents an
ideal, in practice, an approximation to a blackbody may be formed by making a
small hole in the wall of an isothermal cavity. The radiation which exits this type
of cavity resembles that of an ideal blackbody (1:28). Furthermore, many objects
not emitting or reflecting radiation by other processes tend to behave in a manner

similar to that of an ideal blackbody.

Generally, determining directional and spectral properties of the radiation
emitted from a thermal source is the intent of radiometry. While this is a com-
plex problem for an arbitrary source, it is much simplified for an ideal blackbody.
An analytical description of the spectral properties of blackbody radiation was cor-
rectly established by Planck in 1900 (1:39). It is for that reason that the expression

for blackbody spectral radiance is often referred to as the Planck radiation law.
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Figure 1. Blackbody spectral radiance for sources at T=280K to T=330K. These
curves do not intersect at any wavelength. Thus, at a particular wave-
length, the temperature of a blackbody may be uniquely determined.

The Planck radiation law for blackbody sources yields the following form for

the spectral radiance of such a source (1:54):

2hc? 1
o ehe/MT _ | (5)

BB _
Ly® =

where Planck’s constant h = 6.6261x1073*J s, the speed of light ¢ = 2.9979x 10%m/s,
Boltzmann’s constant & = 1.3807x1072*J/K, and T is the temperature measured
in Kelvin. For wavelengths from 2-15 microns and temperatures from 280-330K at
10K increments, the set of curves depicted in figure 1 result from this analytic form

of blackbody spectral radiance.

15




As can be seen from examining the form of equation 5 and is obvious from the
curves in figure 1, the spectral radiance of a blackbody can be completely specified
in terms of a single parameter T, temperature. Additionally, at no point do these
curves intersect. Thus, at a particular wavelength, the temperature of a blackbody
may be uniquely identified by solving equation 5 for 7'. This gives us an expression

for the so-called radiant temperature Tr (1:60):

he

T = s 2k [N Ly(\)] (6)

The spectral radiance emitted from a particular source will in general be dif-
ferent than that of a blackbody at the same temperature. The ratio of the spectral
radiance of a source to that of a blackbody under the same geometry is called the

spectral goniometric emissivity € of that source and is defined as (1:61):

L/\(aa ¢a )‘7 T)lsource
L/\ (07 ¢7 )‘7 T)|blackbody '

e(0,4,1,T) = (7)

2.2.3 Spectral Correlation. As mentioned in Chapter I, much work has
been done in exploiting spectral correlation as a detection feature for target spec-
tral observations. Using the analytic form of blackbody spectral radiance, it may
be shown that a blackbody is perfectly correlated spectrally. If a wavelength pair
(A1, A2) is chosen, then a blackbody at temperature T may be located in the spectral
radiance correlation plane at the coordinate (Lx(A1,7"), Lx(A2,T)). If a plot is made
of these coordinates for several values of T', those points will lie along a line, as is

shown in figure 2.

In general, the curve given in parametric form as [Ly(A1,T"), Lx(A2,T')] does not
specify Ly(A2) as a linear function of Ly();). For temperatures near 300K however,
this curve is sufficiently modeled as being a straight line. Furthermore, the slope
and intercept of this line are completely determined by the particular wavelength

pair (A1, A2) that is chosen. This will be referred to as the blackbody correlation line.
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Figure 2. Blackbody spectral correlation for band pair (9um,11um). This plot
indicates the location of a blackbody at several temperatures in the range

280K to 330K.

Spectral observations that lie along the blackbody correlation line exhibit spec-
tral radiance properties that are similar to a blackbody at the particular choice of
wavelengths (A, A2). Deviations from this line are due to a combination of sensor
noise and spectral emissivity variations. In the absence of significant sensor noise,
spectral emissivity variations will determine how far a particular spectral observation
will lie from the blackbody correlation line. Thus, the empirically-based observation
that natural objects tend to be more highly correlated at certain wavelengths than
man-made objects in the spectral radiance plane (16:15) is a result of the spec-
tral emissivity properties of natural objects being more similar to those of an ideal

blackbody.
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2.2.4 Atmospheric Absorption.  When field measurements of spectral radi-
ance are made, the radiation being emitted from a source is subject to absorption
processes in the atmosphere along its path to the receiver. These processes attenu-
ate the signal that reaches the receiver. This attenuation, however, is not constant
with wavelength, but instead exhibits a wide range of variation due to the molecular
absorption properties of the constituent atmospheric gases such as H,O and CO,.
The combined effect of such gases in the infrared spectrum is to produce regions of

low (atmospheric windows) and high (atmospheric doors) absorption.

The problem of atmospheric absorption is a difficult one, as there are a large
number of variables affecting the magnitude of that absorption (i.e., atmospheric
composition, constituent concentration, and radiation path). For the purposes of
this research, exact quantification of absorption coeflicients are not necessary. In-
stead, it is important to understand in what regions of the spectrum the radiance
measurements made are significantly affected, and are therefore less representative

of the spectral radiance properties of the observed source.

Figure 3, taken from the IR/EO Handbook (15:40) shows the spectral absorp-
tion properties of various gases present in the atmosphere. In general, the observed
spectrum will be subject to processes which produce spectral absorption properties
that are a combination of the individual gas variations depicted in figure 3. As in-
dicated by the absorption curves, atmospheric windows exist in the 3.0-5.5 pm and
7.3-13.5 um region of the spectrum. Within the 3.0-5.5 um window, however, there
is a strong absorption line centered near 4.3 ym due to atmospheric CO,. In the
5.5-7.3 pm spectral region, an H,0O absorption band exists, with absorption in that
region being near 100%.

2.8 Statistical Classification

In order to accomplish the task of automated detection of targets from infrared

spectral data, it will be required to classify all observations into one of two classes;




Wavenumber (cm ™)
08000 2000 1000 700

T IV_ o I ICO

=T 1
0'—-r T chy

100 ~
0 "’?\"f‘ﬁ{“’ T N,0
]
5 100 - -
Q —
g Je O v v,
£4% v
= | 2100l —
3 s 0 ——
12 LTV ™
<
100 -

0 v Y HDO

100 — -
Omu W H,0
100 | -

0 F2'nd Solar
spectrum
100 1 1 l
1 4 8 12 16

Wavelength (um)

Figure 3. Laboratory absorption spectra of atmospheric gases. Bottom graph in-
dicates combined effect of atmospheric gases on the solar emission spec-
trum. (Figure reproduced from The Infrared and Electro-Optical Systems
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19



targets and non-targets. Thus, the classification problem at hand is a two-class
problem, where the decision to be made is to which of the two classes a certain
observation belongs. The act of classifying any signal is ultimately little more than an
intelligently-formed guess at class membership based upon evidence that is gathered
from that signal. To make this guess as intelligent as possible, it is necessary to
invoke the mathematics of statistical decision theory. The discussion that follows
introduces the concepts that are key in this theory and provides guidance for their

implementation.

2.83.1 Feature Spaces and Discriminant Functions. In our common expe-
rience, classification is a familiar process. We classify the elements of the observed
world typically in an unconscious fashion. When asked to characterize the members
of a particular class, we often invoke qualitative descriptions that highlight the fea-
tures of that class and distinguish it from other classes. In this way, we provide for

class separation on the basis of observed features.

Quantitatively, we may perform a similar act of class separation of signals
(images, spectra, etc.) by the measurement of quantitative features. In a general
sense, a feature is any measurement that may be performed on a signal. In the
case of images, this may be the value of a gray-level at a scene location. In the
case of spectral data, a feature may be, for instance, the spectral radiance at a
particular wavelength. Derivative features may also be used whose value is the
result of performing a calculation on the signal as opposed to extracting information
directly. Whatever the feature is, it must be measured in the same manner for all

signals, despite class membership.

With a single feature, or a set of features, measurements made on a signal
will yield a vector « that describes the location of that signal in a space defined by
the feature or combination of features. It is the location given by z that provides

a means by which a signal may be assigned a class. The act of classification or
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class estimation is performed via discriminant functions (3, 4, 6, 14) defined in
the feature space constructed from the set of features, X. The argument of these
discriminant functions is the feature vector z, the values of which are measured from
the signal. These functions are symbolized as D;(z), where the index i refers to a
particular class. For the two-class problem, ¢ = 1 (target) or ¢ = 2 (non-target).
With the use of these discriminant functions, a decision rule may then be defined
such as: if Dy(z) > Ds(x), then the signal associated with = belongs to class 1
(target), otherwise, it belongs to class 2 (non-target). Thus, with this decision rule,

all observations may be assigned a class.

2.3.2  Probability and Bayesian Decision Rule.  In the preceding discussion,
the concept of a discriminant function defined in a feature space was introduced as a
means by which a classification decision may be made. The particular form or origin
of these discriminant functions was not discussed. In general, discriminant functions
may have any form. It is desirable, however, to use discriminant functions which

provide for maximum separation of the classes and minimal total decision error.

To achieve the goal of minimum total decision error for a set of observations,
knowledge of the statistical properties of the feature values x for that set must be
used. In addition, it is desirable to also have knowledge of the statistical properties of
class membership. Specifically, estimates of the class-conditional probability, p,(z|6;)
and the class a priori probability (12:18), P(6;) are needed. The class-conditional
probability (12:13), ps(|0;) (read ‘the probability of z given 6,’) is the probability
that an observation will have a feature value z if it is of class 6;. The a priori
probability P(6;) is the probability that any observation will belong to the class ;.
Here, the term ‘probability’ refers to the relative frequency of occurrence (12:12).
For example, if there are a total of 10 balls, 3 red, 5 blue, and 2 green, then P(red) =
2 =0.3, P(blue) = 2 = 0.5, P(green) = £ =0.2.

10 10 7 10 T
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In the classification problem at hand, a feature value vector x will be measured,
and from that measurement a class must be assigned to the observation. Thus, the
relevant probability in this process is p;(0;|z) (read ‘the probability of §; given z’).
This is called the a posteriori probability (12:18). This probability may be calculated
using Bayes Theorem (12:16):

pi(fife) = FE—m (8)

The a posteriori probability given by Bayes Theorem in equation (8) may then be
used as a discriminant function D;(z) for the class §;. Hence, for the two class

problem:

Di(z) = pi(6i]2) 9)
Dy(z) = pa(fs]x)

where §; = target and 0; = non-target. Thus, the a posteriori probabilities may also

be used to formulate a decision rule:

if p1(01lx) > p2(0s|z) then class = 6, (10)

of p2(61]2) < pa(02]z) then class = 0,

This rule is referred to as the Bayesian decision rule or the mazimum a pos-
teriori (MAP) classification criterion, as the class with the maximum a posteriori

probability is assigned to the observation with feature measurement vector z.

The implementation of the Bayesian decision rule for classification, in accor-
dance with equation (8) requires knowledge of p,(z|0;), P(6;), and p(z). The value
of p(z) is the same regardless of class and thus its appearance in the a posteriori
probability (and therefore in the discriminant functions) is inconsequential in the

Bayesian decision rule. Furthermore, in the absence of information to the contrary,
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if the occurrence of a target or non-target in an observation is equally likely, then
P(0,) = P(6;) = 0.5. Hence, in this case, the a priori probabilities are also in-
consequential in the decision rule. With these simplifications in hand, the problem
of comparing the class a posteriori probabilities only requires estimating the class-
conditional probabilities p,(z|6;), as only a relative comparison of the a posteriori
probabilities is required by the Bayesian decision rule. The probabilities p,(z|6;) are
often referred to as the class-conditional probability distribution functions or PDFs.

The method of generation of these PDFs is discussed in Chapter III.

2.3.3 Non-parametric Bayes Error Estimation. In the two-class classi-
fication problem, two types of errors may occur; a target may be classified as a
non-target (missed detection) or a non-target may be classified as a target (false
alarm). Both types of error contribute to the total error associated with the classifi-
cation process. For the Bayesian decision rule with the a priori probabilities assumed
equal, these errors occur when the feature vector o computed for an observation
lies in a region where the class-conditional probability of the opposite class is greater
than the class-conditional probability of the observation’s actual class. Graphically,
this corresponds to the area of overlap of the two PDFs in feature space, as pictured
in figure 4. This error is referred to as the Bayes error rate and it represents the

minimum average probability of error in classification (4, 3, 6).

The Bayes error rate for a set of observations in a particular feature space is
determined by the form of the ¢lass-conditional PDF's utilized in the classification
process. To construct these PDF's, a set of representative observations called ‘training
data’ is employed. Statistical properties of this data set, such as the mean and
standard deviation of a particular feature for each class may be calculated. The
PDFs may then be constructed by assuming a functional form, such as a Gaussian
distribution, using the characteristic measures of each class as parameters for the
distribution. This represents a parametric method of PDF construction and the

corresponding Bayes error is considered to be a parametric estimation.
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Figure 4. Composition of total decision error.

If a form of the class-conditional PDFs is not assumed, but rather measured
from the training set data directly, then the resulting form of the PDFs is non-
parametric. Correspondingly, a non-parametric Bayes error rate estimate may be
made. Non-parametric methods are generally preferred, as the class-conditional
PDFs for real observation data rarely follow the exact analytic forms assumed in

parametric methods.

Non-parametric construction of class-conditional PDFs may be carried out in
several manners. In this research, three density estimation techniques are employed:

discrete bins, k-nearest neighbors, and Parzen windows. Each technique is discussed

briefly here.




2.3.3.1 Discrete-Bin Density Estimation.  The simplest technique for
non-parametric class-conditional PDF construction is the use of a histogram (3:424).
This involves dividing the feature space into N equally-sized bins. Each bin repre-
sents a discrete region in feature space. The probability value for each bin may be
calculated based on the relative frequency of occurrence of an observation in that

bin (18:40): ()09
nx\y),v;

where pg(x(7)|0;) is the discrete class-conditional PDF value for class i, (j) repre-

sents the feature value = being located in the j* bin, n(z(j),¥;) is the number of
occurrences of the feature = in bin j for class ¢, and n(;) is the number of occurences

of class 7 in the training set. The range of j is from 1 to N.

2.3.3.2  k-Nearest Neighbor Density Estimation.  The k-nearest neigh-
bor (k-NN) PDF estimation technique was developed by Fix and Hodges in 1951 and
is now used as a standard technique for non-parametric PDF estimation (5). If the
volume about a point  in feature space that encompasses the k** nearest neighbors
to the point z is small, then the probability estimate at the point x should be large.
Conversely, if this volume is large, the probability at z should be small. This idea
is the basis for the k&-NN PDF estimation technique. Mathematically, this density

estimate is expressed as (10:15):

k—1
Nevalsa [ 2 )]

p(|0:) = (12)

where N; is the number of observations of class 6;, V; is the volume of an n-

dimensional unit radius hypersphere which for n an even integer is (4:24):

,R.n/2
= G

25




and for n an odd integer is given by:

on(n—1)/2 (_n;_l)|

n!

V, =

Y

¥; is the covariance matrix for the i class (12:127):
Yo =F [(:c(i) - X(i)) (w(i) - X(i))T] )

where the feature vectors (! compose the set X for class ¢, and d?(z,y) is the

squared Mahalanobis distance metric for the i class given by given by (4:38):
di(z,y) = (z — y)"'8; (= ~ y).

2.3.3.3 Parzen Window Density Estimation. Parzen introduced an
alternative non-parametric PDF estimation technique in 1961 (11). The Parzen
window density estimate may be thought of as the sum of windowing functions
evaluated at a point z in feature space and centered at an observation point z(*)
associated with the class ;. The result of this summing is to interpolate between
observation points z(") where each observation contributes to the estimate according

to its distance from the point z.

The Parzen density estimate for the PDF of class 6; in a feature space of

dimension n at a feature value « is written mathematically as (7:634):

1Yo a:—:v(i)
pz(z(0;) = .2 ;Tnk'i( ; ! ),

J=1

where :cg;i) represents IV; observations of class 0y, k;(-) is the window function (kernel)
whose spread is controlled by the parameter h. Although the choice of kernel for the
Parzen window technique is arbitrary, it is common to use the Gaussian (normal)

function. When this kernel is inserted in the general expression for the Parzen density
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estimate, the expression obtained is (10:16):

1 d?(fcafvﬁi))) (13)

N;
=(z]6;) = exp | —

where X; and d?(-,-) are the covariance matrix and squared Mahalanobis distance

metric respectively, as defined in section 2.3.3.2.

2.8.4 Classifier Testing. To design and test a classifier and quantify its
performance in terms of the Bayes error rate, it is desirable to have a large training set
that is separate from the testing set and to be able to completely specify the class-
conditional and the a-priori probabilities for each class. Unfortunately, practical
data rarely supports this need. To approach the problem of small data sample
size, the resubstitution and leave-one-out testing techniques have been developed.
These techniques are also significant since the actual Bayes error rate lies in an
interval bounded below by the resubstitution estimate and above by the leave-one-

out estimate (6). These techniques are discussed in the sections that follow.

2.3.4.1 Resubstitution. In the resubstitution technique, the observa-
tion set is not partitioned into a training set and testing set. Instead, the entire set
is used both for training and for testing. The probability of error (portion of the
observations misclassified) is assumed to be representative of the error that would be
obtained when testing against a similar set of data in the future. While this technique
provides a large set of data for training, the resulting error is optimistically-biased, as
the class-conditional PDFs developed in training also represent the exact statistical
properties of the testing set. Realistically, even similar data obtained in the future
is likely not to have the exact statistical properties as the training set. Nonetheless,
the resubstitution error rate can still be viewed as the lower-bound on the Bayes

error rate, as it represents the ‘best-case’ performance that may be achieved (6:220).
) p p
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2.3.4.2 Leave-One-Out.  Leave-one-out testing is usually credited to
Lachenbruch (9). This type of testing is performed by first taking one observation
out of the complete set of observations available. The class-conditional PDFs are
then constructed (through any technique) using the remaining available observations.
Next, the observation that was taken out is then classified using the PDF's generated
from the remaining set. That observation is then placed back into the complete
set, another observation is taken out, and the process is repeated. This technique
has the advantage of making maximum use of the available observations for training
purposes, without optimistically biasing the final classification results. In fact, the
error rate generated by leave-one-out testing forms an upper-bound on the Bayes

error rate (6:221).

2.4 Summary

This chapter has presented a range of theoretical concepts that are employed
in the research presented in this thesis. The key points in this chapter are presented

below:

e Optical radiation may be measured in quantities such as spectral radiance
which describe the variation of optical field flux density with the wavelength
of radiation. The unit of spectral radiance employed in this research is the

pflick, which is a uW per em? per steradian per pm.

e The spectral radiance emitted from a blackbody follows the Planck radiation
law. This law indicates that blackbody spectral radiance is completely specified
in terms of the parameter T', the source temperature. Variations from an ideal
blackbody’s spectral radiance define a material’s spectral emissivity. These
variations result in reduced correlation when the spectral radiance of a source
at two wavelengths is plotted in a plane. In such a plane, a blackbody therefore

exhibits perfect correlation.
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e Spectral observations may be treated like other signals and thus, statistical
classification theory may be applied directly to the problem of infrared spec-
tral target detection. In order to do this, a feature set must first be established
that provides for class separation. With this established feature set, discrim-
inant functions based upon Bayes Theorem may be constructed and invoked
in the Bayesian decision rule in order to carry out classification of spectral

observations.

e The minimal average error rate associated with classifying a set of observations
in a particular feature space is called the Bayes error rate. This rate may be
estimated using one or more of several available techniques for constructing
the form of the discriminant functions used in the Bayesian decision rule. The
bounding of this error rate is accomplished using resubstitution and leave-one-

out classifier testing techniques.

In the next chapter, the theory outlined above will be reconciled with the infrared
spectral data available. Methodology for the implementation and testing of a target

detection algorithm is presented in detail.
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III. Methodology
3.1 Introduction

The theory presented in Chapter II provides a strong basis upon which a clas-
sifier may be constructed in order to quantify target detection performance with
spectral-only infrared data. The present chapter discusses the methods by which
this theory was put to use in classifying the JMSP radiance data obtained from the
research sponsor, WL/AARI. This chapter is intended to offer the interested reader
insight as to how the results presented and analyzed in Chapter IV were obtained.

The topics discussed are as follows:

o Testing data: characteristics and specific aspects of the data collection

Feature set development: techniques developed to provide class separability

and definition of established classification feature set

Class-conditional PDF generation: standard methods and options utilized

Multiple feature classification: methods for combining feature information

Classification testing methods: standards for performing tests of the classifier
e Bayes error rate estimation: methods and code used to establish error rates
e Standardized performance metrics: definition of performance quantification

These methods are implemented in a software system called the Infrared Spectra Tar-
get Detector, which was designed and developed by the author using the MATLAB
numeric computation and visualization system. For details concerning the operation

of the detector software, see Appendix A.

3.2 Testing Data

As discussed in section 1.4, the spectral data available for classifier design

and testing came from the Joint Multispectral Sensor Program (JMSP) and was
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made available for this research by WL/AARI. At this point, data from 7 different
field collection efforts are available in the JMSP database. Taken as a whole, this
database represents well over 10,000 spectral observations taken on approximately 20
different targets along with spectral observations on background material such as tree
canopy, grass, soil, gravel, and concrete, including seasonal and diurnal variations.
Characteristics of this data are discussed below along with details on the collection

efforts.

3.2.1 Spectral Data Characteristics.  The spectral data used in this research
was collected by the Bomem MB-100 Fourier Transform Spectrometer (FTS) (2),
which has been specifically designed by Bomem for radiometric measurements and
field use. The MB-100 operates by scanning out an interferogram with its wishbone
scan arm on which two corner-cube reflectors are mounted that each receive part of
the input radiation from a KBr beamsplitter (2). The interferogram is sampled in
conjunction with a reference HeNe laser beam and then Fourier transformed in order

to produce the spectrum of the input radiation.

In the configuration used for data collection, the interferometer has two inputs;
one directed toward the target of interest and the other to a stable liquid nitrogen
reference. There are also two outputs which direct the incident radiation onto two
separate detectors; an InSb detector for the MWIR (3-5 microns) and an HgCdTe
detector for the LWIR (8-12 microns). An interferogram is produced on each of these
detectors (2).

A 10-inch Cassegrain telescope and collimator serve as input optics for the
Bomem FTS. The system has a maximum instantaneous field-of-view of 5 millira-
dians (when limiting apertures are fully opened). A CCD camera is boresighted

through the telescope aperture to provide video monitoring of the targets on which

- spectral radiance measurements are being made. The entire system assembly is

mounted on a motorized altitude-azimuth mount which is computer controlled. Each
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collection event, referred to as an ‘experiment’ is completely automated. Once pro-
grammed, it is typical for 50 or more spectra to be measured in each experiment,

taking 10-15 minutes to collect the entire set.

In a sensor characterization exercise conducted and reported by ERIM in May,
1994 (2), the sensor was found to exhibit exceptional performance. In the tests
conducted, a noise equivalent spectral radiance of 10~y flicks in the MWIR and 6 x
107" uflicks in the LWIR was measured. Furthermore, the sensor was found to have a
relative calibration accuracy of less than 0.25% above 4 um and spectral correlation
preservation greater than 0.9999 in the LWIR. Between the MWIR and LWIR as
well as within the 4 to 5 um region of the MWIR, the correlation preservation was
measured to be greater than 0.9995 (2). Since the field measurements made have
spectral radiance values on the order of 10% to 103 pflicks for the spectral regions
of interest, sensor noise is regarded as being insignificant and its effects are not

considered in this research.

Each spectrum that is measured by the sensor is stored in a linear array with
728 elements. This array represents spectral radiance measurements (reported in
pflicks) made between 698.1 and 3502.1 wavenumbers (¢cm ™). These values corre-
spond to wavelengths ranging from 14.32 to 2.86 um respectively. Radiance measure-
ments are evenly spaced in wavenumber with a spectral resolution of approximately

4 em™'. A typical target spectral measurement is shown in figure 5.

Arrays for each measurement in an experiment (typically over 50) are pieced
together end-to-end and recorded in one binary file. Ground truth files for each ex-
periment identify the spectra and specify their location in the composite array struc-
ture. Associated header files provide collection date and time-of-day information for
each experiment. Extensive use of the ground truth and header file information is

made by the Infrared Spectral Target Detector software (sece Appendix A).
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Figure 5. Typical spectrum measured by the Bomem FTS. This plot shows the
same data plotted as a function of wavenumber (top) and wavelength
(bottom). As collected, the 728 sample points in each spectrum are
evenly spaced in wavenumber.

3.2.2  ‘Symptom Slew’ Data Collection Configuration. = The JMSP database
represents a large and diverse collection of spectral signatures, including observations
from four different geographic locations. While the detection software developed is
able to process all this data, particular focus was given to one of the data collection
sets. This set of observations, called the ‘symptom slew’ data set, consists of a set
of 137 experiments conducted 6-10 June 1994 at Wright-Patterson AFB, Ohio. This
data set contains over 2,700 spectral signatures of targets and over 1,500 non-target
spectral signatures. All observations were made with the Bomem FT'S operating from
the Wright Laboratory Avionics Directorate testing tower in Area B of WPAFB.
During this testing, the sensor field of view at the target was always smaller than

the target dimensions.
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Ground Truth Name Class Target Description
1 | Scud_B_Missile target S5S-1 ‘Scud’ missile
2 | MAZ543 Launcher target launcher vehicle for Scud missile
3 | Lance_Missile target U.S. MGM-52 short range missile
4 | M752_Launcher target launcher vehicle for Lance missile
5 | M35 _Truck target U.S. military truck
6 | M50_Tank target U.S. military artillery tank
7 | Scud_B_Decoy target physical decoy for Scud B missile
8 | MAZ543_Decoy target physical decoy for Scud missile launcher
9 | CARC_Green_Panel target aluminum panel coated with U.S. Army
CARC 383 green vehicle paint
10 | UHaul _Truck target civilian utility vehicle
11 | Tree_Canopy non-target | trees surrounding test area

Table 1. Symptom slew data set target and non-target listing.

This data set serves as a good design and testing set since it contains a variety
of targets along with a large set of non-target observations (mostly tree canopy).
The targets and non-targets studied extensively from the symptom slew data set,
along with their numerical designations, ground-truth file names, and descriptions

are shown in table 1.

During the five days of the symptom slew data collection, the targets listed in
table 1 were placed in various configurations to collect radiance measurements on
targets located in the open, partially obscured, or in an operational state. The con-
figurations of the targets listed in table 1 are important, as the radiance properties of
the measurements made changed as the configurations were varied. The descriptions
and the figures that follow offer a qualitative description of the testing configuration

on each day of the data collection.

3.2.2.1 Day One: 6 June 1994. The first day of data collection
occurred on 6 June 1994. In order to baseline the measurements made in the following
days, all targets were set in the observation area in front of the tree-line as indicated
in figure 6. Observations began in the early morning hours (after midnight) and

proceeded until mid-afternoon. All targets remained inactive during this testing
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Figure 6. Target configuration for symptom slew day one testing. Numbers in the
diagram correspond to the target designations given in table 1.

(no engines running). Tree canopy observations were made by sampling the dense

wooded area located behind the targets as indicated in figure 6

3.2.2.2 Day Two: 7 June 199). Testing on day two of the data
collection (7 June 94) supported the characterization of the changes in the radiance
measurements when the targets were in an operational state (engines turned on). To
accommodate these measurements, all targets remained in the same configuration
as the previous day’s testing (6 June 94), which is shown in figure 6. Tree canopy
samples were collected from the same region of woods observed during the previous

day’s testing.

3.2.2.3 Day Three: 8 June 1994. On the third day of the data
collection, the effects of target obscuration by the tree canopy were investigated.
The basic target configuration was similar to that on 6 June 95 (see figure 6), except
that the Scud and Lance missile assemblies (both missile and launcher) were placed

within a siall clearing in the surrounding woods such that both targets were partially

obscured as viewed from the tower. In this location, the targets were in a radiant




Figure 7. Target configuration for symptom slew day three testing. . Numbers in
the diagram correspond to the target designations given in table 1.

environment where the tree canopy contributed significantly to the measured target
spectral radiance, simulating a hidden target encounter. This configuration is shown
in figure 7. The engines on all targets remained off throughout the testing. Once
again, the tree canopy adjacent to the targets’ location was sampled to provide

non-target observations.

3.2.2.4 Days Four & Fie: 9-10 June 1994. On the fourth and
fifth days of the data collection, the Scud assembly (missile and launcher), the Scud
decoy, the CARC (Chemical Agent Resistant Coating) green panel, and the Lance
assembly (missile and launcher) were moved to a distant hill that could be observed
from the tower, as shown in figure 8. None of the targets were obscured during this
testing, and all target engines remained off throughout the data collection. Non-
target observations were made by sampling the tree canopy near the targets on the

distant hill.
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Figure 8. Target configuration for symptom slew day four & five testing. Numbers
in the diagram correspond to the target designations given in table 1.

3.3  Feature Set Development

As part of this research, a set of classification features was developed to facil-
itate target detection. The construction of these features was guided by review of
the relevant literature as well as suggestions by the advisors to this research effort.
A majority of the motivation behind the development of these features, however,
came about through extensive analysis of the training data. Thus, the set of fea-
tures developed reflects those features that were observed to offer adequate class
separability within the limitations of the training set. In general, these features
were not derived from first principles and then applied to the data, but rather, they
were engineered using the relevant radiometric theory and the empirically observed

statistical properties of the training data itself.

Within this section, the concept of atmospheric normalization, a technique
developed during the course of this research, is introduced. In addition, each of
the features designed, implemented, and incorporated into the detection software is
discussed in detail. A definition of the feature is stated and a physical interpretation

is offered where necessary.




3.3.1 Atmospheric Normalization. = As was mentioned in the introduction
to this section, a unique aspect of this research is the proposition and utilization of a
concept referred to here as atmospheric normalization. In this technique, knowledge
of the temperature of the atmosphere surrounding the target is used to calculate an
atmospherically-normalized spectral radiance, L. Mathematically, this is defined
as:

P oy = RO Ts)

B X ) o

where LEB(),T,) is the blackbody spectral radiance as given in equation (5) evalu-
ated at the temperature of the atmosphere T4 surrounding the observed target, whose
temperature is Ts. As can be seen from equation (14), L, is a dimensionless quantity.
Those familiar with radiometry should not confuse atmospherically-normalized spec-
tral radiance with the normalized spectral distribution function f (1:55), wherein
spectral radiance is divided by the maximum spectral radiance reached by a black-
body at a given temperature. Instead, the atmospherically-normalized spectral radi-
ance is similar to the spectral goniometric emissivity as given in equation (7), where
the blackbody spectral radiance is calculated at the atmospheric temperature, Ty, as
opposed to the observation temperature, T's. Hereafter, atmospherically-normalized

spectral radiance will be referred to as simply normalized spectral radiance.

As defined, computation of the normalized spectral radiance requires knowl-
edge of the atmospheric or ambient temperature surrounding the target of interest.
In practice, this information is rarely available in a direct form. In this work, infor-
mation contained in the observed spectral measurement was utilized to estimate the

ambient temperature.

As discussed in section 2.2.4, all infrared radiation is subject to absorption
processes due to various molecular gases in the atmosphere. As is shown in figure 3
(see section 2.2.4), there is a large absorption band ranging from 5.5 pm to 7.3 um
due to vaporous H,O. This absorption is near 100% around 6.25 um (15). At

this wavelength, therefore, radiation being emitted from the target of interest will
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propagate only a few meters before being completely extinguished by the water vapor
absorption. Thus, at 6.25 um, the radiance measurements made do not reflect the
spectral emission properties of the target of interest, but instead are a measure of
the spectral emission properties of water vapor that is located a few meters from the

sensor.

For a sensor located at an arbitrary distance from the target of interest, the
spectral emission properties of water vapor a few meters from that sensor may not
be indicative of the spectral emission properties of water vapor located around the
target. For the training set used, in which the sensor was located several hundred
meters from the target deployment site, the difference between the observed spectral
emission and the actual spectral emission of the atmosphere surrounding the targets
was small and therefore regarded as negligible. Thus, in order to estimate the am-
bient temperature at the target deployment site, the spectral radiance at spectrum
sample number 232, which corresponds to a wavelength of 6.29 um, was extracted
from each spectral measurement. With this spectral radiance, the radiative temper-
ature could be computed using equation (6). This radiant temperature was taken
to be an estimate of T4, the temperature of the atmosphere surrounding the target
of interest, and was thus used to calculate the normalized spectral radiance as per
equation (14).

The atmospheric normalization method described above is easily implemented
given the spectral data available. The results that will be presented in Chapter IV
demonstrate the significant performance improvement that may be obtained through
its use. While this particular method has been proven beneficial, the practical impli-
cation of the concept of atmospheric normalization is that knowledge of the thermal

background (by any means) is required to achieve high levels of target detection.

As will be seen in the feature definitions that follow, normalized spectral ra-
diance is used extensively throughout the classification feature set. Ultimately, the

utility of such features depends upon the ability to estimate the ambient tempera-
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ture. Hence, the sensitivity of the classification performance to ambient temperature

estimation errors is examined in detail in Chapter IV.

3.3.2 Feature Definition.  All classification features developed in this work
have been designed as generalized features. By ‘generalized’ feature, it is meant that
the wavelength or wavelength band in which the feature is calculated is left as a
parameter in the feature definition. By specifying values for these parameters, the
generalized features become specialized features used for classification. Thus, these
features may be applied to the MWIR as well as the LWIR. While the features may
be applied in any region of the spectrum, there is no guarantee on the level of perfor-
mance that may be achieved. For all of the generalized features, default wavelength
or wavelength band values are defined. These defaults have been determined during
the course of this research to yield satisfactory class separation under the Bayesian

classification construct.

For the sake of clarity, throughout the feature definitions, either wavelengths
(X) or wavenumbers (7 = A71) are used as the spectral designator. Remember that
the spectral data is contained in an array in which the samples are evenly spaced in
wavenumber. Whether the spectral designator is A or 7, the corresponding spectral

radiance sample does not change.

For the specialization of the spectral radiance, normalized spectral radiance,
and the normalized radiant temperature features defined below, a default wavelength
of 7.49 pm was chosen. This choice was made as it was observed during the feature
development process that classification error rates were minimized at this wavelength
for the normalized radiant temperature feature. Thus, 7.49 um was selected as the
default for the spectral radiance and normalized spectral radiance features as well.
This wavelength selection allows for a direct comparison of the features’ classification

performance to that of normalized radiant temperature.
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3.8.2.1 Spectral Radiance.  The spectral radiance feature value, L(As),
is computed by extracting the spectral radiance at a particular wavelength Ag directly
from the observation spectrum. Any sample in the available spectrum may be used.
The default is sample number 166, which corresponds to a spectrum wavelength of

7.49 pm. The feature value returned has the units of uflicks.

3.3.2.2 Normalized Spectral Radiance. =~ The normalized spectral radi-
ance feature, I 2(As), is calculated according to equation (14). As such, it represents
the normalized version of the spectral radiance feature. The normalized spectral ra-
diance feature values are dimensionless quantities. Feature values close to 1 indicate
that the observed spectrum possesses radiance properties similar to a blackbody at
the ambient temperature T4 at the spectrum sampling wavelength As. The nor-
malized spectral radiance feature may be calculated at any sample in the spectrum.
The default sample for this feature is sample number 166, which corresponds to a

wavelength of 7.49 pm.

3.3.2.8 Normalized Radiant Temperature. To compute the normal-
ized radiant temperature feature value at a particular wavelength Ag, the radiant
temperature Ts is computed at the specified wavelength according to equation (6)
using the observed spectral radiance. The ambient temperature T4 is then estimated
by sampling the observation spectrum at 6.29 um (A4) and using that spectral ra-
diance measurement to compute the radiant temperature of the atmosphere. Using
these numbers, the normalized radiant temperature 7' is then computed as:

T = (15)

Slix

The default sampling wavelength for this feature is 7.49 pm (sample number 166).
Normalized radiant temperature is a dimensionless quantity. As is the case with

normalized spectral radiance, feature values near 1 indicate that the observation’s
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radiance properties at wavelength Ag are similar to that of a blackbody at a tem-

perature T'4.

3.3.2.4 Normalized Band Radiance. The features defined thus far
have made use of radiance measures at one particular wavelength (wavenumber). The
normalized band radiance feature, however, uses spectral radiance measurements in
a wavenumber band from 7; to ;. Within this band, the observed radiance of a
source L9B%(Ts) at a temperature T's may be computed by integrating the observed

spectral radiance L9P5(, Ts) with respect to 7 over the band:

1

LOB5(Ts) = / " LOBS(5, Ts)dp.

Similarly, the radiance of a blackbody at the ambient temperature in the same band

may be computed as:

LBB(T,) = /  LBB(5,T,)do.

Using these two band radiance measurements, the normalized band radiance is com-

puted as:

LOB5(Ts)  [2 L9BS (v, Ts)dv

1

LBB(Ty) — [P LBB(9,Ts)dv "

V1

L= (16)

The observations in the test set are expected to exhibit apparent temperatures
near 300K, resulting in a spectral radiance peak in the 9-11 gm band ( 900-1100
wavenumbers). Hence, the default band for computing this feature was chosen to
be 9.10-11.08 pm (samples 54-105). The integration over the band is accomplished
using the trapezoidal rule (17:201). Normalized band radiance feature values are
dimensionless quantities. Again, values for normalized band radiance that are close
to 1 indicate that the radiance properties of the observation are similar to that of a

blackbody in the band from 7; to 7,.
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3.8.2.5 Spectral Radiance Wavenumber Moment. Moments about
the mean value X of a random variable X are called central moments. The nt*

moment (n = 0,1,2,...) is given the symbol pX and is calculated as follows (12:70):

WX =EI(X - X)) = [ (o - %) fx(2)de,

where fx(z) is a function which describes the manner in which X is distributed in
the variable range (here, —oco to co0). To describe how radiance is distributed over
a band of wavenumbers for a spectral measurement, the spectral radiance at each
sample in the band must be divided by the total band radiance. Hence, the spectral
radiance distribution fr,(7) in a wavenumber band ranging from #; to ¥, may be

computed as:

1o = L

This spectral radiance distribution can be used to calculate the n®* wavenumber

moment as follows:

Wi = Bl = (o))" = [ (7= ()" i, (9)d. (1)
The expression given in equation (17) is used to compute the spectral radiance
wavenumber moment feature value. In computing the distribution as well as the
value of the moment, numerical integration is accomplished using the trapezoidal
rule (17:201). To be consistent with the normalized band radiance feature, the
default band that is used for calculating the wavenumber moment is between samples
54 and 105, which corresponds to a wavelength band from 9.10-11.08 gm. The
default moment number for this feature is n = 1. Values of the spectral radiance
wavenumber moment feature have dimensions of wavenumbers (cm™!) to the n'®

power.
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3.3.2.6 Normalized Spectral Radiance Wavenumber Moment. Just
as the spectral radiance distribution was used in computing the spectral radiance
wavenumber moment, so too may a normalized spectral radiance distribution be

computed in a band ranging from 7; to 7s:

As before, this distribution may be used to define the n** normalized spectral radi-

ance Wavenumber moment as:
i = Bl = (o)1 = [ (7= ()" iy dv. (18)

When computing the value of this feature, all integrations are accomplished numer-
ically using the trapezoidal rule (17:201). The default band used for calculating this
wavenumber moment is from spectrum sample 54 to spectrum sample 105, corre-
sponding to a wavelength band ranging from 9.10 um to 11.08 um. The default
moment number for this feature is n = 1. These default values were chosen to
be consistent with the spectral radiance wavenumber moment feature. Values of
the normalized spectral radiance wavenumber moment feature have dimensions of

wavenumbers (cm™1) to the n'* power.

3.8.2.7 Spectral Radiance Correlation Distance. As was presented
in section 2.2.3, for a given pair of wavelengths (A, A2), the spectral radiance mea-
surements of an ideal blackbody forms a straight line when the parametric curve
[LEB(M,T), LBB(X,, T))] is plotted as a function of T. Thus, if a spectral observa-
tion possesses characteristics similar to a blackbody at the wavelength pair (A1, A;),
then when plotted in the spectral radiance correlation plane, this observation should
lie close to the blackbody correlation line. If the slope m and intercept b of the

blackbody correlation line for a given wavelength pair is known, then the distance
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from the point (LBS(A1), LYBS5();)) to that line is given by:

[L§75(\) ~ mESS(2) b
m?+1

D(/\l,)\z) = (19)

The slope m and intercept b for the spectral radiance correlation line may be
computed directly, once two points on the line are known. These points may
be generated from the Planck radiation law, given in equation (5), and choosing
two source temperatures, 73 = 280K and 7, = 330K, which yield two widely-
separated points in the correlation plane (see figure 2). These temperatures repre-
sent the range of apparent temperatures expected to be exhibited by the test data.
Thus, with the blackbody correlation points, (LEZ(\;,280K), LBB(),,280K)), and
(LEB(M\,330K), LBB();,330K)), the slope m and intercept b are given by:

LEB(X;,330K) — LEB()2,280K)
LBB()\1,330K) — LBB()\,,280K)

b = L3B(X;,280K) — mLE¥B(\,280K)

As can be seen from the distance formula in equation (19), the distance feature value
1s positive and is measured in p flicks. As a default, the band pair (9.19um, 11.03um)
is used in computing values for this feature. This band pair has been observed to

yield high target detectabilities in the research efforts being conducted by the JMSP.

3.3.2.8 Normalized Spectral Radiance Correlation Distance.  Instead
of using the observed spectral radiance at two different wavelengths in the correlation
distance feature, the normalized spectral radiance at those wavelengths can be used.
When using the normalized spectral radiance as defined in equation (14), the task of
computing the distance from an arbitrary observation point to the correlation line
is simplified. The simplification comes from the fact that in the normalized spectral

radiance correlation plane, the line of correlation is the line of slope m = 1 and
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intercept b = 0 (the y = z line). Thus, for the wavelength pair (A, A2), the distance

from the point (L9B5(\y), L9B5()3)) to the correlation line is given by:

A |L$PS(,) — LS (W)
D()\1,)\2) = \/5 .

(20)

The distance measure ﬁ( A1,)2) 18 @ dimensionless quantity, since normalized spectral
radiance is also dimensionless. As is the case for its non-normalized counterpart, the
default wavelength pair values are 9.19um and 11.03um. Again, this band pair has
been observed to produce high target detectabilities in research being conducted by

the JMSP.

3.3.2.9 Corrected Spectral Radiance.  In the spectral signatures that
are part of the training set, the predominant spectral characteristic of both target
and non-target observations is emission which follows the general form of the Planck
radiation law (a blackbody) with local spectral variations of differing relative mag-
nitude caused by spectral emissivity differences in the target materials. To capture
and exploit these local variations, it is necessary to remove the underlying black-
body spectral emission curve. As defined, the corrected spectral radiance feature

accomplishes this task.

The motivation for computing this feature is provided by the definition of
spectral emissivity, which is given in equation (7). In order to compute the spectral
emissivity, one must know the temperature of the emitting source. An estimate of
this temperature obtained by making radiant temperature measurements at several
wavelengths and calculating the average of those measurements. Using equation (6),

an estimate of the source temperature Tr can be obtained for N spectrum sampling

points as:

_ 1 N
TR = ']'\_/-'ZTR(/\Z)

=1




Using this estimate of the source temperature, the corrected spectral radiance L'y is

defined as:
10 = 2T @)
" (A TR)

As implemented in the detection software, the estimate of source temperature is
made by averaging over the radiant temperatures computed at each sample within a
specified band. The corrected spectral radiance may then be evaluated at a partic-
ular wavelength (preferably within the band used to estimate source temperature).
The default source temperature estimation band is from 8.00 gm (sample 144) to
12.00 gm (sample 36). This band was chosen for source temperature estimation as
the radiant temperatures computed in the band are highly consistent. The default

wavelength for corrected spectral radiance evaluation is 11.42 pm (sample 47), which

was found to minimize the classification error rate associated with this feature.

3.8.2.10 Corrected Spectral Radiance Standard Deviation.  Using the
symptom slew training data, it was established empirically that the corrected spectral
radiance of target observations exhibits larger variations with wavelength than do
the corresponding non-target observations. As such, a classification feature was
developed to quantify this variation. Over the spectrum range from 8.00 um to
12.00 pm, it was observed that for both target and non-target spectra, the corrected
spectral radiance maintained a value near 1. Furthermore, between 8.00 um and
9.5 um, target spectra exhibited much greater variation than in other ranges. Thus,
in this range, the sample standard deviation of the corrected spectral radiance is

computed as (18:46):

S, - 1y (22)
oL, = N _1- Xi A)

=1
The feature value computed is a dimensionless quantity (same as corrected spectral
radiance). The wavelength band from 8.00 um (sample 144) to 9.5 pm (sample 92)

is the default range for computing this feature, taking advantage of the differences




between the target and non-target corrected spectral radiances observed in this band

during the feature development process.

3.83.2.11 Energy Normalized Matched Filter. A linear space-invariant
filter that is matched to a signal s(z) has an impulse response given by h(z) =
s*(—=z) (8:178). Thus, if an input signal ¢g(z) is applied to a filter matched to s(z),

then the output v(z) is given as:

o) = [[” g&)s(6 o) de.

In application, the signal s(z) is often called a template, while the filter is referred
to as a matched filter. When constructing such a filter, the template s(z) and the
input signal g(x) are often energy-normalized by dividing each sample of a signal by

the square of the sum of the signal’s components.

The output of such an energy normalized matched filter was employed as a
classification feature in this research. In order to implement this feature, a template
was constructed in a certain wavelength band by using the spectral radiance of a
blackbody at the estimated temperature of the atmosphere surrounding the target
of interest. The value of the feature for a particular observation is taken to be the
maximum value of the matched filter output when the observation signal is used as
an input. Additionally, the cross-correlation indicated in the definition of a matched
filter is accomplished using a discrete Fourier transform method. Hence, the energy

normalized matched filter feature value is computed as:
vz, = max[F{F{LP5(\, Ts)}-F{LYP (A, Ta)} ), (23)

where Zf\)B S(\,Ts) is the energy-normalized spectral radiance of the observed target
of interest and LBB (A, T4) is the energy normalized blackbody spectral radiance at

the ambient temperature T4 in the same band as the observed spectrum. For this
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feature, the default wavelength band ranges from 9.10 pm (sample 105) to 11.08 um
(sample 54). This default band was chosen to be consistent with the other features
in the set that utilize data in a particular band of the spectrum (e.g. normalized

band radiance).

3.4 Class-Conditional Probability Distribution Function Generation

Essential to the Bayesian classifier is the estimation of the class-conditional
probability distribution function for each class. In this research, discrete class-
conditional probability distribution functions (PDFs) were generated for all features
using a histogram approach with equally sized bins (3:424). The bins may be in a
linear array, representing a single feature class-conditional PDF, or in a 2-D matrix,

representing a two-feature joint class-conditional PDF.

The number of bins used for the PDF generation can be set arbitrarily by the
user of the detection software. For the results reported here, however, default bin
numbers built into the detection software were used; 100 bins for a one-dimensional
PDF, 50 bins in each dimension for a joint PDF. For each bin, the probability density
estimate was computed according to the relative frequency of occurrence, as stated

in equation (11).

With a set of feature values X, the width of each bin is determined by the
dividing the feature interval [min (X'), max (X)] into N, bins of width wj:

max (X) — min(X).

= 24
wy N, (24)

A feature value 2 would be counted in the j** bin if:
[min (X) + ( — Dws] < 2 < [min(X) + jws). (25)
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For a joint (two-dimensional) distribution, a feature vector (z,y) would be counted

in the (5, k™) bin if:

[min (X) + (j — Dwe,] < 2 < [min(X) + jwy,] and
[min (¥) -+ (k — 1)us,] <y < [min (V) + by, ], (26)

where wy, and wy, are the bin widths in the z and y directions, respectively. With
all bin frequencies counted, each bin in the :** array or matrix was divided by the
number of occurrences of class 6; to obtain a relative frequency, which was taken as
an estimate of the class-conditional probability within the range of feature values

associated with each bin.

The feature interval [min (X ), max (X)] is determined automatically once the
signature database has been parsed for the desired set of spectral observations and
feature values for those observations have been computed. In order to obtain a more
accurate estimate of the PDF without using more bins, the feature value interval can
be ‘cropped’ by the user specifying any value for the feature minimum or maximum.
If the minimum for cropping is less than the observed minimum, the observed min-
imum is used. Likewise, if the maximum specified for cropping is greater than the
observed maximum, the observed maximum is used. While cropping can be used to
increase the fidelity of the PDF estimate, it should be employed conservatively, as
any observations that are mapped into a feature region outside the cropped feature
interval will be classified according to their distance from the target or non-target
distribution centroid (minimal distance decision rule), not according to the Bayes de-
cision rule. Hence, a minimal average error is not guaranteed for those observations

mapped to a feature region outside the specified interval.

Once a class-conditional PDF has been generated, the information is saved to
a file to be used in performing detection runs on the test data. As constructed, the

detection software allows a PDF file to be used for any set of test data as long as
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the same classification feature set is employed. This allows distinct training sets and

test sets to be employed in classifier testing.

3.5 Multiple Feature Classification

With a single feature, the method of quantifying classifier performance is clear:
construct the class-conditional PDFs using training data, apply these distributions
in a Bayesian classifier, and assess the results of that classification by comparing the
results with known ground truth. If multiple feature values are computed for each

observation, then the methods involved are not as clear.

Of particular concern is the issue of how the class-conditional probability may
be quantified in a higher dimensional feature space. Instead of simply knowing
the class-conditional probability for a particular feature z, p,(z|6;), the joint class-
conditional probability px(z1,zs,...,zx|0;) for a feature set X must be known. For
N features in the set X, construction of N-dimensional class-conditional PDFs is
required. In this research, construction of joint class-conditional PDFs above two
dimensions was not attempted, as increasing the dimensionality of the feature space
requires an increasing number of spectral observations in the training set in order to

obtain a valid PDF estimate.

A feature space of higher dimensionality than two can be investigated, given
that the features employed are statistically independent. In this case, the joint
class-conditional probability can be determined by simply taking the product of the
individual class-conditional probabilities. Thus, for N independent features z; in

the set X, j = 1...N, the joint class-conditional probability distribution is given by:
N

pX(wlaw%"-axN'ei) = ]:[pl‘(m]wi) (27)
J=1

In practice, the features developed are not likely to be completely indepen-

dent, as they are ultimately based upon the same spectral radiance measurements.
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Marginal performance improvement, however, may still be garnered by assuming
that they are independent and computing the joint probability as indicated in equa-
tion (27). For each feature selected, a single-feature class-conditional PDF must
be constructed. If the features chosen are not statistically independent, then sub-
optimal performance will be realized from the Bayesian classifier, as the joint class-
conditional probability has been determined incorrectly. While the performance
may be sub-optimal, it may still be better than the performance realized using only

a single classification feature.

3.6 Classification Testing Methods

As implemented in the detection software, the classifier may be tested on any
set of data available in the JMSP database. The set of spectral observations to be
tested is controlled by experiment and target lists, which are explained in detail
in Appendix A. At the time that a test is initiated, a file which contains PDF
information must also be supplied to the classifier. In general, the testing and
training sets may be completely separate. The standard method used in this research,
however, was to use the same set of observations for training and testing. In so doing,
resubstitution and leave-one-out tesing are two well-established procedures by which

the performance may be assessed.

When a classifier test is conducted, resubstitution methods are employed first.
After performance has been assessed in this manner, leave-one-out testing is per-
formed and a set of summary detection statistics is computed for comparison to the
resubstitution results. When the leave-one-out testing is performed, the PDFs con-
structed when an observation is left out are computed similarly to the resubstitution
PDFs. That is, the same number of bins, the same feature limits, and the same bin
widths are employed. Thus, the resubstitution and leave-one-out results will form a
set of consistent measurements that bound the Bayes error rate for the test set in

the feature space being used.
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As described in section 3.2.2, the symptom slew data set contains considerable
variation in target configuration, which may also introduce variations in class sepa-
rability. As a result, this set of experiments has been partitioned into two subsets:
unobscured and obscured. The unobscured test set consists of observations made
on all targets listed in table 1 during testing on days 1-2 and 4-5 of the symptom
slew data collection. This set contains 793 target and 486 non-target observations
for a combined total of 1,279 spectral signatures. The obscured test set consists
of 297 observations made on the obscured MAZ543_TEL and M752_Launcher tar-
gets and 216 observations made on the surrounding tree canopy during day 3 of the
symptom slew testing. Test results on the unobscured set should be considered as a
less-stressful test of class separability whereas the obscured set is considerably more

stressful. Neither set represents an extreme or rare target viewing condition.

3.7 Bayes Error Rate Estimation

As discussed in Chapter II, the Bayes error rate associated with a set of testing
data in a given feature space may be estimated in several ways. With a given set of
test data and a given feature, the estimate obtained will depend upon the method
utilized in constructing the class-conditional PDF for each class. The Bayes error
rate estimate is then the total error rate associated with tests performed using a

particular PDF construction technique with a Bayesian classifier.

In this research, a discrete-bin density estimate (see section 2.3.3.1) is employed
as the principle technique for PDF construction. The results presented in Chapter IV
will reflect error rates established through classifier testing using the discrete-bin
density estimate. In all cases, these error rates are substantiated with other non-
parametric Bayes error rate estimates, specifically those obtained through k-nearest

neighbor (k-NN) and Parzen window density estimates.

The method of error rate estimation using k-NN and Parzen density estimates

is borrowed directly from previous AFIT thesis work in 1993 by Lieutenant Curtis
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Martin (10). The MATLAB code developed by Martin (pknn.m) was incorporated
without change into the software developed for this research. This pknn.m software
takes in a set of feature value observations for each class in the test set (target vs.
non-target) along with a range of k values for k-NN density estimation and a range of
h values for the Parzen windows. The code then partitions the observation sets each
into 10 independent sets and performs testing on each set for every value in the range
of k (k-NN) or h (Parzen) specified. The results of these 10 tests are then averaged
for each value of the k or h parameter and a set of Bayes error estimates for the
k-NN and Parzen techniques is returned. The Bayes error for the observations in the
test set is taken to be bounded by the minimal observed leave-one-out error estimate
and the corresponding resubstitution result. The leave-one-out and resubstitution
error estimates have confidence intervals associated with them, which will relax the
bounding of the Bayes error rate. Hence, the Bayes error rate is bounded with 95%
confidence between the lower limit of the resubstitution interval and the upper limit

of the leave-one-out interval.

3.8 Standardized Performance Metrics

Performance levels achieved in classifier testing are quantified through the use
of standardized metrics. With these metrics, performance levels may be objectively
compared between tests conducted on distinct observation sets, or between tests
performed on the same observation set using different classification features. These
metrics are widely used in target detection work and have been employed successfully

in many applications (13:94).

Once the classification testing is complete, the values for the following variables
are computed for both the resubstitution and leave-one-out methods: the number of
target observations, N;; the number of target observations correctly classified, N/°'";
the number of non-target observations, N,;; and the number of non-target obser-

vations correctly classified, N¢"". Using these variables, the following standardized
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performance metrics are computed: The probability of target detection, Py, given

as:
NCOTT
Py== 28
d Nt ? ( )
the false alarm rate per target declaration, F'AR:
Nnt _ Ncgrr

FAR = z 29
(Nnt _ Nﬁgrr) + Ntcorr ( )

and the total error rate or total probability of error, P,:

N . NCOTT Nn _ NCOTT

Pe:( t ) 4 (Nt ") (30)

Ni 4+ Ny

It is also possible to compute a 95% confidence interval on the total error P,.
In previous work (3:346), this interval was used to compare P, for various detection
algorithms. The 95% confidence interval about P, represents the interval within
which the total error rate will fall 95% of the time for a large amount of equivalently
distributed data. To define this interval, the sample-based estimate of the total error

rate variance must be compute as (3:347):

P.(1-P,)
P = 31
Te Nt + Nnt ( )
It can then be shown that the 95% confidence interval about P, is given by
[(P. — 1.960.), (P. + 1.960.)] (32)

The 95% confidence interval on P, was also computed for each detection run

and included as part of the standardized performance metric set.
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3.9 Summary

This chapter has offered a description of the methods employed in the tar-
get detection research to produce the results presented in Chapter IV. The topics

discussed within the current chapter are summarized below:

o The spectral measurements from the JMSP database were discussed, including
a description of the Bomem MB-100 FTS used to make field observations at
Wright-Patterson AFB, Ohio on 6-10 June 1994. Characteristics of this data
were presented, and the configuration for testing on each day of the collection

effort was detailed.

e The concept of atmospheric normalization was introduced and justified. This
concept is key to many of the classification features developed in this research.

These features were defined and discussed in detail.

e The methods utilized for developing class-conditional PDFs through discrete-
bin density estimation were presented. These PDFs may be used singly or in
combination. When used in combination, the features are assumed indepen-
dent, and the joint probability is taken to be the product of the individual
feature probabilities. If independence is not assumed, the PDF's developed are
two-dimensional, representing the true joint probability distributions for the

two features employed.

e The standard methods for classification testing were outlined, including the
manner in which resubstitution and leave-one-out tests were performed. Stan-

dard test sets for unobscured and obscured targets were discussed.

e The probability of target detection P,, false alarm rate per target detection
F AR, the total error rate P., and the 95% confidence interval were introduced
as a set of standardized performance metrics. These metrics were used to
quantify classifier performance and to compare that performance across clas-

sifier tests.
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IV. Results and Analysus
4.1 Introduction

In the past chapters, the problem has been summarized, the relevant theory has
been presented, and the methods for implementing that theory to solve the stated
problem have been detailed. In this chapter, results obtained from classification
testing using the symptom slew data are presented and analyzed. These results
may be broken down into two types; performance measures and sensitivity analysis.

When discussing performance measures, results will be presented in terms of:

e Single Feature Performance: Metrics detailing detection results obtained when
a single feature is used in the classification process, indicating the degree of

class separability that each feature offers.

e Multiple Feature Performance: Metrics detailing detection results obtained by
assuming independence of features, and thus, computing the joint probability

as the product of the individual probabilities.

o Joint Feature Performance: Metrics detailing detection results obtained by
computing the true joint class-conditional probability distribution functions

for various combinations of two classification features.

Using the classification feature that yields the top performance, the sensitivity of
the Bayesian classifier employing that feature to various factors affecting detection

performance will be investigated. Specifically, results will be presented for:

o Target Set Sensitivity: Variation in performance metrics as the testing target
set is increased, indicating the relative performance of the classifier on each

target tested.

o Target Configuration Sensitivity: Variation in performance metrics as the tar-

gets were placed in different configurations throughout the data collection.
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e Diurnal Sensitivity: Variation in performance metrics as observation time

changes.

e Mean Contrast Sensitivity: Variation in performance metrics as a function of

the observed mean contrast metric (defined in section 4.9) in an experiment.

e Ambient Temperature Estimation Sensitivity: Variation of the total error rate

as the estimate of ambient temperature becomes less accurate.

Taken as a whole, these performance results and analyses should provide an
adequate picture of the ability to separate observations into target versus non-target

classes using spectral-only infrared radiance data.

4.2 Single Feature Performance

In Chapter III, the feature set developed in this research effort was presented,
with a description and mathematical definition being offered for each of the features.
Of particular interest is the performance level that may be achieved on the testing
data when each feature is employed individually. Quantifying these performance
levels will indicate the degree of class separability that each feature provides when
applied to the available spectral data. Investigation of the relative utility of employ-

ing these classification features concurrently will be reserved for a later section.

4.2.1 Feature Performance Ranking.  Classifier tests were performed using
the symptom slew unobscured standard test set. As described in Chapter III, this
test set consists of spectral observations of all targets in the symptom slew target
set taken between the hours of 8:00 a.m. and 6:00 p.m., on the first, second, fourth,
and fifth days of the data collection effort, when no targets were obscured by the

tree-line surrounding the test site.

For each of the classification features, class-conditional PDFs were constructed
using the test set data. These PDFs were in turn employed in a Bayesian clas-

sifier, and the standardized performance metrics were computed using the results
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of this testing. Feature performance was ranked in terms of probability of target
detection, P; (from highest to lowest). The ranking of the classification features is
shown in table 2 and the corresponding performance metrics associated with each of
these ranked features is listed in table 3 for resubstitution (R) and leave-one-out (L)

testing.

As can be seen in table 3, the single classification feature that yielded maximum
performance was the normalized spectral radiance wavenumber moment 1 calculated
in the band between 9.10 and 11.08 um, with a target detection rate between 94.70%
(L) and 95.59% (R) and a false alarm rate between 3.56% (R) and 3.96% (L), cor-
responding to a total error rate of between 4.93% (R) and 5.71% (L). The feature
that displayed the poorest performance was the spectral radiance correlation dis-
tance with the default waveband pair (9.19um,11.03um). Detection levels fall off
significantly for features ranked between these extremes in performance. It is inter-
esting to note that the false alarm rate is minimized using the normalized radiant
temperature at 7.49 pm. While the detection rate for this feature is approximately
10% less than for the top-ranked feature, the corresponding false alarm rate, which
is between 1.18% (R) and 2.90% (L), is almost half of that of the top-performing

feature (normalized spectral radiance wavenumber moment 1).

The Bayes error rate for each of these single feature classification tests was
estimated using the Parzen window technique and code mentioned in Chapter II
and III (6, 10). In all cases except those indicated with an asterisk, the Bayes er-
ror estimate using the Parzen window technique for computing the class-conditional
probability falls within the 95% confidence interval of the total error rate using the
discrete bin density technique. The cases where the Parzen Bayes error estimate
falls outside the interval may be considered suggestive of sub-optimal performance.
However, since the 95% confidence interval on the Parzen Bayes error estimate is
of the same magnitude as the interval given in table 3, significant overlap of the

confidence intervals exists, indicating that the two error estimates are consistent for
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Rank Classification Feature Name
Normalized Spectral Radiance Wavenumber Moment 1: 9.10-11.08 pm
Corrected Spectral Radiance at 11.42 ym
Normalized Band Radiance: 9.10-11.08 pum
Normalized Spectral Radiance at 7.49 uym
Normalized Radiant Temperature at 7.49 pm
Corrected Spectral Radiance Standard Deviation: 8.00-9.53 pm
Normalized Spectral Radiance Correlation Distance: (9.19um, 11.03um)
Spectral Radiance Wavenumber Moment 1: 9.10-11.08 um
Spectral Radiance at 7.49 um
Energy Normalized Matched Filter: 9.10-11.08 um
Spectral Radiance Correlation Distance: (9.19um, 11.03um)

—

OO0} | O =N

| p—
|l )

Table 2. Single feature classification ranking based on P;, highest to lowest.

95% Bayes
Confidence Error
Rank | Test Py FAR P. Interval (Parzen)

0.0305*
0.0516
0.0774
0.0891
0.0844
0.0906

0.0734*

0.0804*

0.9559 | 0.0356 | 0.0493
0.9470 | 0.0396 | 0.0571
0.9117 | 0.0334 | 0.0743
0.9117 | 0.0373 | 0.0766
0.8815 | 0.0398 | 0.0962
0.8815 | 0.0398 | 0.0962
0.8676 | 0.0269 | 0.0970
0.8676 | 0.0471 | 0.1087
0.8449 | 0.0118 | 0.1024 | (0.0858,0.1190) | 0.0765*
0.8449 | 0.0290 | 0.1118 | (0.0945,0.1291) | 0.0796*

(0.0374,0.0611)
( )
( )
( )
( )
( )
( )
( )
o
0.8348 | 0.0741 | 0.1439 | (0.1246,0.1631) | 0.1188*
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(

0.0444,0.0698
0.0599,0.0886
0.0620,0.0912
0.0800,0.1123
0.0800,0.1123
0.0807,0.1132
0.0916,0.1257

0.8159 | 0.0849 | 0.1611 | (0.1409,0.1812) | 0.1282*
0.7516 | 0.0387 | 0.1728 | (0.1521,0.1935 0.1540
0.7352 | 0.0395 | 0.1830 | (0.1618,0.2041 0.1626
0.7112 { 0.1350 | 0.2478 | (0.2242,0.2715 0.2424
0.6759 | 0.1612 | 0.2815 | (0.2568,0.3061) | 0.2565*
0.6822 | 0.1426 | 0.2674 | (0.2431,0.2917 0.2799
0.6419 | 0.1946 | 0.3182 | (0.2927,0.3437) | 0.2839*
0.6318 | 0.1180 | 0.2807 | (0.2561,0.3053 0.2737
0.5864 | 0.2065 | 0.3511 | (0.3249,0.3772) | 0.2760*
0.6103 | 0.1597 | 0.3135 | (0.2881,0.3390) | 0.2798*
0.5511 | 0.1739 | 0.3503 | (0.3241,0.3764) | 0.3283

10

11
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Table 3. Performance metrics associated with single classification feature ranking.
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each feature. The consistency of the error rates for all classification features demon-
strates that the Bayesian classifier constructed has not been designed improperly.
Thus, the computed detection, false alarm, and total error rates should be regarded
as indicative of classification performance near the Bayes limit for this data and

feature set.

4.2.2  Distribution functions of Top-Ranked Features. It is instructive to
study the form of the class-conditional distributions for each of the top-ranked fea-
tures in the classification feature list. A feature was considered as ‘top-ranked’ if its
associated Bayes error rate was less than 10%. This criterion yielded a list of the
top five features listed in table 2. When used in single feature classification, all of
these features yield target detection rates greater than 84% with false alarm rates

less than 5% (some yield significantly better performance).

The class-conditional PDFs for the normalized spectral radiance wavenumber
moment 1 feature as computed in the 9.10-11.08 pum wavelength band is shown in
figure 9. Asis depicted in this figure, the target observations appear to be distributed
in an approximately normal fashion with a mean value near 2 wavenumbers. On the
other hand, the non-target distribution does not appear to be normal, but overlaps
the target distribution minimally. In the feature space, non-targets tend to have
higher moment values than targets. Additionally, the distribution of non-target
observations is wider than that of targets. The probability of error indicated in
figure 9 was computed by assuming that the test set would have equal a priori
probabilities. Since this assumption does not hold for the test set at hand (60%
target, 40% non-target), the actual probability of error is somewhat higher. This
fact is true of all error probabilities displayed on the PDF figures in this section.

Figure 10 depicts the class-conditional PDFs measured for the corrected spec-
tral radiance at 11.42 pm. As is seen from the figure, the non-target distribution is

highly bi-modal, exhibiting two strong density peaks at feature values less than 1.

61




Normalized Spectral Radiance Wavenumber Moment 1: 9.097 — 11.08 microns
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Figure 9. Class-conditional PDF's for Normalized Spectral Radiance Wavenumber
Moment 1.

Nevertheless, as the bulk of the target distribution lies at feature values greater than
1, the amount of overlapping of the class-conditional distributions is sufficiently low
to allow for single feature error rates that are the second lowest of all the features in

the feature set.

The third-ranked classification feature was normalized band radiance in the
9.10-11.08 pum waveband. The class-conditional PDFs for this feature are shown
in figure 11. In the space associated with this feature, the non-target observations
appear to be highly confined, existing in a range of feature values (normalized band
radiance) in the interval from around 1.0 to 1.1. Target observations tend to have

higher values for the normalized band radiance. Additionally, the feature values

62




Corrected Spectral Radiance at 11.42 microns
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Figure 10. Class-conditional PDFs for Corrected Spectral Radiance.

associated with target observations have a wider range. Thus, the distributions
overlap minimally, leading to a decreased error rate.

The normalized spectral radiance class-conditional PDFs, shown in figure 12,
exhibit distributions similar to those associated with the normalized band radiance
feature. Once again, the normalized spectral radiance values for non-targets tend
to be lower (closer to 1) with less variance than the values for targets. Again, the
confinement of the non-target distribution relative to that of the target observations
provides for a low total error rate.

The normalized radiant temperature feature is computed in a manner similar
to that of the normalized spectral radiance. In fact, these two features simply char-

acterize the radiance properties of the observed source at a particular wavelength
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Normalized Band Radiance: 9.097 - 11.08 microns
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Figure 11. Class-conditional PDFs for Normalized Band Radiance.

in subtly different ways. Whereas the normalized spectral radiance is a ratio of the
observed spectral radiance at a particular wavelength to the spectral radiance of a
blackbody at the same wavelength but at the ambient temperature, the normalized
radiant temperature feature instead uses a ratio of radiant temperatures. Thus, it is
not surprising that the class-conditional PDF's for the normalized radiant tempera-
ture, seen in figure 13, display characteristics similar to those of normalized spectral
radiance. Again, the feature values associated with non-targets have values close to
1, whereas the target feature values tend to be higher and more varied. This, of
course, reduces the amount of overlap in the distributions, thus reducing the total

error rate associated with classification processes which utilize this feature.
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Normalized Spectral Radiance at 7.493 microns
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Figure 12. Class-conditional PDF's for Normalized Spectral Radiance.

4.2.3 Effect of Normalization on Feature Performance. In the ranking of
feature performance, it should be noted that four of the top five classification features
are normalized features. The concept of atmospheric normalization, introduced in
Chapter III represents one of the significant results of this research. Its utility comes

from the significant increase in performance that is achieved through its application.

In the discussion of the class-conditional PDFs presented previously, the char-
acteristic confinement of non-target versus target distributions is exhibited for many
of the normalized features, indicating that non-targets display radiance properties
that are similar to those of a blackbody at the ambient temperature surrounding
them. In other words, these features seek to exploit the higher degree of equilibrium

with the environment displayed by non-targets (especially vegetative). In fact, it has
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Normalized Radiant Temperature at 7.493 microns
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Figure 13. Class-conditional PDFs for Normalized Radiant Temperature.

been established that living vegetation employs active controls such as transpiration
to maintain this equilibrium. Thus, it is reasonable that the radiance properties
of non-targets are significantly less varied than targets once those properties are

normalized using knowledge of the ambient temperature.

A convincing illustration of the utility of atmospheric normalization can be

made by considering the class separation that is exhibited when normalized and non-
normalized versions of the same type of feature are used. In the feature performance
ranking, the ninth-ranked feature was that of spectral radiance at 7.49 um. Its
normalized counterpart, however, was ranked fourth. Furthermore, whereas the

spectral radiance feature exhibited a Bayes error rate between 27.99% and 28.39%,
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the normalized spectral radiance feature’s Bayes error rate was bounded between

7.34% and 8.04%.

The origin of this large error disparity between the non-normalized and nor-
malized versions of spectral radiance can be seen by comparing the class-conditional
PDF's that are obtained when each is used as a classification feature. These PDFs
are shown in figure 14. While pure spectral radiance measurements at 7.49 pm
fail to confine or separate the two classes, simply normalizing the measurement to
the expected spectral radiance for a blackbody at the estimated temperature of the
atmosphere surrounding the source greatly increases the class separability. This is
accomplished by first removing a large component of the scene-to-scene variation
in the spectral radiance measurements. Once this variation has been removed, the
ensemble distributions that remain reflect characteristics of the physical differences
in radiance properties of targets versus non-targets. Hence, by atmospherically nor-
malizing a feature, the separability of the classes is driven by characteristics which
are directly related to actual class membership. In this light, therefore, it is not sur-

prising that the process of feature normalization yields increased class separability.

4.3  Multiple Feature Performance

In section 3.5, the use of multiple features for classification was discussed. As
was presented, the crux of the problem is to estimate the joint class-conditional
probability for the two or more features being used. If the features are assumed to
be statistically independent, then the joint probability can be obtained by taking
the product of the class-conditional probabilities for each feature, as indicated in

equation (27).

Acting upon the assumption of feature independence, combinations of the top-
five ranked classification features in table 2 were used to classify the spectral ob-

servations in the symptom slew unobscured test set between the hours of 8:00 a.m.
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Spectral Radiance at 7.493 microns
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Figure 14. Effect of normalizing spectral radiance feature values. Comparison of
the non-normalized PDFs (a) to normalized PDFs (b) for the spectral
radiance feature.




Rank Classification Feature Name
1 Normalized Spectral Radiance Wavenumber Moment 1: 9.10-11.08 um

2 Corrected Spectral Radiance at 11.42 um
3 Normalized Band Radiance: 9.10-11.08 um
4 Normalized Spectral Radiance at 7.49 um
5 Normalized Radiant Temperature at 7.49 um
Rank
Rank | Test 1
2 R |0.0407 | Rank
L |0.0508 2
3 R [0.0336 | 0.0461 | Rank
L ]0.0477 | 0.0516 3
4 R |0.0352 | 0.0446 | 0.0868 | Rank
L |0.0446 | 0.0516 | 0.0876 4
5 R [ 0.0336 | 0.0485 | 0.0923 | 0.0946
L ]0.0461 | 0.0555 | 0.1024 | 0.1095
Total Probability of Error, P,

Table 4. Total probability of error (P.) using two-feature combinations, assuming
feature independence.

and 6:00 p.m., as was done when using single features. The results of this testing
are displayed in matrix form for re-substitution (R) and leave-one-out (L) tests in

tables 4 and 5.

These results indicate that the feature combination that minimizes the total
error rate under the assumption of feature independence is the top-ranked feature,
normalized spectral radiance wavenumber moment 1, and the fifth-ranked feature,
normalized radiant temperature. The total error rate for this combination of fea-
tures is between 3.36% and 4.61%. The second and third top performing feature
combinations are those using the normalized spectral radiance wavenumber moment
1 feature with the normalized band radiance and normalized spectral radiance fea-

tures, respectively.

While the combination of normalized spectral radiance wavenumber moment

1 and normalized radiant temperature minimizes the total error rate, it does not
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Rank Classification Feature Name

1 Normalized Spectral Radiance Wavenumber Moment 1: 9.10-11.08 pm

2 Corrected Spectral Radiance at 11.42 um
3 Normalized Band Radiance: 9.10-11.08 um
4 Normalized Spectral Radiance at 7.49 ym
) Normalized Radiant Temperature at 7.49 um
Rank
Rank | Test 1
2 R 09672 | Rank
L ]0.9634 2
3 R |0.9660 | 0.9344 | Rank
L |0.9596 | 0.9319 3
4 R | 0.9660 | 0.9357 | 0.8827 | Rank
L ]0.9634 | 0.9306 | 0.8827 4
5 R {0.9647 | 0.9294 | 0.8739 | 0.8689
L ]0.9622 | 0.9256 | 0.8663 | 0.8449
Probability of Target Detection, Py
Rank
Rank 1
2 0.0328 | Rank
0.0450 2

0.0205 | 0.0094 | Rank
0.0367 | 0.0160 3
0.0230 | 0.0080 | 0.0251 | Rank
0.0354 | 0.0147 | 0.0264 4
0.0192 | 0.0081 | 0.0253 | 0.0241
0.0366 | 0.0161 | 0.0351 | 0.0247
False Alarm Rate, FAR

)
SEASIEISE I

Table 5. Probability of target detection (P;) and false alarm rate (FAR) using
two-feature combinations, assuming feature independence.
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concurrently maximize the probability of detection while minimizing the false alarm
rate. The results in table 5 indicate that the probability of detection is maximized
by the combination of the two top performing single features, normalized spectral
radiance wavenumber moment 1 and corrected spectral radiance, with a detection
rate between 96.34% and 96.72%. On the other hand, the false alarm rate is min-
imized by the combination of corrected spectral radiance and normalized spectral

radiance, with a false alarm rate between 0.80% and 1.47%.

Comparing these results to those obtained through single feature classification
does show an overall performance improvement when two features are used, even
with the assumption of independence. Using combinations of two features that are
assumed to be independent, the minimal total error rate dropped by more than 1%
while the maximum probability of target detection increased by approximately 1%

and the minimum false alarm rate observed dropped by close to 1%.

When working under the assumption of feature independence, no limit has
been imposed on the number of features to be employed. Thus, the classification
paradigm may also be applied equally well to combinations of three features. To
effectively perform this analysis, the results obtained by pairing two features were
used as a guide. As was discussed previously, the top three performing feature pairs
utilized normalized spectral radiance wavenumber moment 1 paired with normalized
radiant temperature, normalized band radiance, and normalized spectral radiance,
respectively. Thus, to extend the classification paradigm to feature triplets, it is
prudent to simply add another feature to these pairs. Specifically, the feature chosen
to add to each pair was the feature that yielded the second greatest performance level
when paired with normalized radiant temperature, normalized band radiance and
normalized spectral radiance. Not surprisingly, the results in table 4 indicate that for
all three of these features, the additional feature that produced this second greatest
performance was corrected spectral radiance, the second-ranked single classification

feature.
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Rank Classification Feature Name
1 Normalized Spectral Radiance Wavenumber Moment 1: 9.10-11.08 ym

2 Corrected Spectral Radiance at 11.42 um
3 Normalized Band Radiance: 9.10-11.08 um
4 Normalized Spectral Radiance at 7.49 um
5 Normalized Radiant Temperature at 7.49 um
Feature 95%
Ranking Confidence
Combination | Test Py FAR P. Interval
1,5,2 R | 0.9672 | 0.0217 | 0.0336 | (0.0237,0.0435)
L [0.9609 | 0.0379 | 0.0477 | (0.0360,0.0594)
1,3,2 R 10.9672 | 0.0229 | 0.0344 | (0.0244,0.0444)
L ]0.9634 | 0.0390 | 0.0469 | (0.0353,0.0585)
1,4,2 R ] 0.9660 | 0.0254 | 0.0367 | (0.0264,0.0471)
L ]0.9622 | 0.0390 | 0.0477 | (0.0360,0.0594)

Table 6. Peformance obtained by combining corrected spectral radiance with top-
three greatest performing feature pairs, with the assumption of feature
independence.

The results obtained by pairing corrected spectral radiance with the top three
feature pairs is shown in table 6. From these results, it can be seen that all feature
triplets seem to yield approximately the same performance level in terms of total
error rate, P, as witnessed by the large amount of overlap in the 95% confidence
intervals. While the probability of target detection improves marginally (< 0.25%)
with three features, the false alarm rates appear to have risen slightly (< 0.5%) and
thus, the improvement of the total error rates is not statisically significant considering
the associated 95% confidence intervals. Hence, it is not clear that utilizing more
than two features in the paradigm of assumed independence produces any overall

performance improvement.

4.4 Joint Feature Performance

It is apparent from the results presented in the previous section that by as-

suming feature independence, some performance improvement may be obtained. In
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Rank Classification Feature Name
1 Normalized Spectral Radiance Wavenumber Moment 1: 9.10-11.08 pm

2 Corrected Spectral Radiance at 11.42 ym
3 Normalized Band Radiance: 9.10-11.08 um
4 Normalized Spectral Radiance at 7.49 um
5 Normalized Radiant Temperature at 7.49 pum
Rank
Rank | Test 1
2 R ]0.0360 | Rank
L ] 0.0641 2
3 R 10.0281 | 0.0399 | Rank
L |0.0516 | 0.0821 3
4 R [0.0274 | 0.0297 | 0.0915 | Rank
L |0.0438 | 0.0711 | 0.1188 4
5 R ]0.0289 | 0.0360 | 0.0884 | 0.0876
L ]0.0477 | 0.0766 | 0.1063 | 0.0876
Total Probability of Error, P,

Table 7. Total probability of error (P.) using two-feature combinations with joint
class-conditional probability distribution functions.

the case of two feature combinations, the true joint probability may be calculated
by constructing a two dimensional distribution function as described in section 3.4.
Since no assumption is made regarding the degree of feature dependence, computing
the true joint class-conditional probability should yield increased performance from
the Bayesian classifier. The results of combinations of two features in classifying the
symptom slew unobscured test set between the hours of 8:00 a.m. and 6:00 p.m. are

shown in tables 7 and 8.

The results in table 7 show that the total decision error is minimized when the
the top-ranked feature, normalized spectral radiance wavenumber moment 1, and
the fourth-ranked feature, normalized spectral radiance are used jointly. The total
error rate for this feature combination is shown to be between 2.74% and 4.38%.
The second and third top performing feature combinations are those using the nor-

malized spectral radiance wavenumber moment 1 feature with the normalized band
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Rank Classification Feature Name
1 Normalized Spectral Radiance Wavenumber Moment 1: 9.10-11.08 um

2 Corrected Spectral Radiance at 11.42 um
3 Normalized Band Radiance: 9.10-11.08 um
4 Normalized Spectral Radiance at 7.49 um
5 Normalized Radiant Temperature at 7.49 um
Rank
Rank | Test 1
2 R |0.9685 | Rank
L ]0.9483 2
3 R 09773 { 0.9470 | Rank
L }0.9571 | 0.8815 3
4 R ]0.9760 | 0.9647 | 0.8701 | Rank
L [0.9634 | 0.9054 | 0.8411 4
5 R |0.9735 | 0.9483 | 0.8878 | 0.8878
L ]0.9584 | 0.9004 | 0.8613 | 0.8878
Probability of Target Detection, Py

Rank
Rank | Test 1
2 R | 0.0266 | Rank
L |0.0517 2
3 R [0.0227 | 0.0118 | Rank
L | 0.0405 | 0.0155 3
4 R |0.0203 { 0.0129 | 0.0199 | Rank
L ]0.0341 | 0.0218 | 0.0375 4
5 R | 0.0203 | 0.0066 | 0.0330 | 0.0316
L ]0.0355 | 0.0259 | 0.0367 | 0.0316
False Alarm Rate, FAR

Table 8. Probability of target detection (FP;) and false alarm rate (F'AR) using two-
feature combinations with joint class-conditional probability distribution
functions.




radiance and normalized radiant temperature features, respectively. It is interesting
to note here that these same three feature combinations were also the top-performing
combinations under the assumption of feature independence, though not ranked in

the same order.

The same feature combination that minimized total decision error also max-
imized the probability of target detection when those features are used jointly. As
is indicated in table 8, the probability of detection is maximized by the combina-
tion of normalized spectral radiance wavenumber moment 1 and normalized spectral
radiance, with a detection rate between 96.34% and 97.60%. The false alarm rate,
however, is minimized by the combination of corrected spectral radiance and nor-

malized radiant temperature, with a false alarm rate between 0.66% and 2.59%.

In comparing the results obtained by employing two classification features
jointly to those achieved using only a single classification feature, it is obvious that
the increased dimensionality of the feature space provides for greater class separa-
bility. Specifically, the total error rate, P, drops by nearly 2%, while the probability
of target detection, Py, increases by 2% and the minimal observed false alarm rate
decreases by close to 1%. This overall increase in class separability can be under-
stood more fully by considering the joint class-conditional PDFs for the top-ranked

joint feature combination, as shown in figure 15.

As this figure illustrates, the two features utilized provide for increased class
separability due to the fact that the distribution for each class is ‘spread’ in an or-
thogonal direction in the two-dimensional feature space defined by the feature com-
bination. While the variation of feature values for targets is larger in the normalized
spectral radiance direction than in the normalized spectral radiance wavenumber
moment 1 direction, the opposite is true for non-targets. Thus, the area of overlap
in the distributions is significantly decreased, leading to an increase in classification

performance.
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ized spectral radiance wavenumber moment 1 and normalized spectral
radiance.
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95%
Classification Mazimum | Minimum | Minimum Confidence
Type Test Py FAR P, Interval

Single Feature R 0.9559 0.0118 0.0493 | (0.0374,0.0611)
L 0.9470 0.0290 0.0571 | (0.0444,0.0698)
Two Features R 0.9672 0.0080 0.0336 | (0.0237,0.0435)
(assumed indep.) | L 0.9634 0.0147 0.0461 | (0.0346,0.0576)
Three Features R 0.9672 0.0217 0.0336 | (0.0237,0.0435)
(assumed indep.) | L 0.9634 0.0379 0.0477 | (0.0360,0.0594)
Two Features R 0.9760 0.0066 0.0274 | (0.0184,0.0363)
(used jointly) L 0.9634 0.0259 0.0438 | (0.0326,0.0550)

Table 9.  Summary of best observed performance metrics for various classification
methods.

4.5 Classtfication Performance Summary

The previous sections in this chapter have presented the performance results as-
sociated with testing on the symptom slew unobscured data set using features singly,
in combination with the assumption of independence (both pairs and triplets), and
jointly in a two-dimensional feature space. Each of these testing paradigms repre-
sent different methods for obtaining an estimate of the class-conditional probability,
which lies at the heart of the Bayesian decision rule for class estimation. Perhaps the
best way to summarize the results obtained and compare these methods is to look at
the maximum P;, minimum FAR, and minimum P. with its associated confidence
interval for each of the class-conditional probability estimation paradigms. These
results are shown in table 9. From this table, it becomes obvious that moving from
single-feature classification to two-feature classification is beneficial, with all perfor-
mance metrics improving. It is less obvious, however, which method of employing
two features is best. Although the resubstitution (R) values of the metrics for two
features used jointly are significantly improved over those obtained under the as-
sumption of feature independence, they vary more significantly under leave-one-out
(L) testing. Ultimately, the high degree of overlap of the confidence intervals for

these two methods does not make a compelling case for the joint use of classification

(s




features over an assumption of independence. Marginal performance improvement
for joint feature usage, however, is still implied by the results, indicating that the
decision as to whether to use features jointly lies mainly in the relative difficulty
of obtaining the joint class-conditional probability in the two-dimensional feature

space.

When using multiple features under the assumption of independence, the re-
sults in table 9 do not indicate that using more than two features in the classification
process will significantly improve performance. In fact, the results demonstrate that
the use of three features may maintain the probability of target detection, but ac-
tually increase the false alarm rate. Since the 95% confidence intervals associated
with two and three feature classification overlap, any improvements realized cannot
be regarded as statistically significant. Thus, the use of more than two classification
features under the assumption of independence is not demonstrated to be beneficial

to the classification process.

Looking over the results obtained by single feature, multiple feature, and joint
feature classification, one classification feature stands out as contributing signifi-
cantly. The normalized spectral radiance wavenumber moment 1 feature (computed
in the 9.10-11.08 pm waveband) was involved in minimizing total error while maxi-
mizing probability of target detection in all classification methods discussed. From
these results, it appears to be a strong discriminant that can be effectively used
in a non-imaging spectral infrared target detection system. Therefore, in the sec-
tions that follow, the sensitivity of this feature to several variables that would be

encountered in such a system is explored and quantified.

4.6 Target Set Sensitivily

The results presented thus far are from testing the entire set of targets present
during the symptom slew data collection. This list was presented in table 1, section

3.2. In table 3 (section 4.2), performance metrics were presented for resubstitution
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Target Spectra | Correctly | Incorrectly | Percent | Percent

Name Classified | Classified | Classified | Correct | Incorrect
M35_Truck 96 96 0 100.0 0.0
UHaul Truck 18 18 0 100.0 0.0
CARC_Green_Panel 11 11 0 100.0 0.0
Scud_B_Missile 8 8 0 100.0 0.0
Scud_B_Decoy 8 8 0 100.0 0.0
Lance_Missile 6 6 0 100.0 0.0
Mb50_Tank 101 100 1 99.0 1.0
M752_Launcher 63 62 1 98.4 1.6
MAZ543_TEL 388 365 23 94.1 5.9
MAZ543 _Decoy 94 84 10 89.4 10.6
Tree_Canopy 486 458 28 94.2 5.8

Table 10. Breakout of classification performance on individual targets for re-
substitution testing.

(R) and leave-one-out (L) testing using the normalized spectral radiance wavenum-
ber moment 1 feature. While the results obtained reflect the level of classification
performance using this feature, they do not indicate the level of performance achieved

on each target individually.

Table 10 details the number of spectral observations for each target encoun-
tered in the symptom slew unobscured test set, along with the number of those
observations classified correctly, incorrectly, and the corresponding percentages for
resubstitution testing only. These results indicate that extremely high levels of per-
formance may be achieved for a large set of the targets present in the test array. To
understand the manner in which the performance metrics change as the target set is
expanded, tests may be performed in which target observations are successively in-
cluded in the test set, the class-conditional PDFs are recomputed, and classification
is performed while the set of non-targets (tree canopy in this case) is kept constant.

Such a set of tests produced the results detailed in table 11.

The results in table 11 show that the probability of target detection does not
begin to fall off (from 1.0) appreciably until the MAZ543_TEL target is included in
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95%
Target Confidence
Included Py FAR P, Interval
M35_Truck 1.0000 | 0.2000 | 0.0412 | (0.0251,0.0574)
0.9896 | 0.2276 | 0.0498 | (0.0322,0.0675)
1.0000 | 0.1739 | 0.0400 | (0.0243,0.0557)
0.9912 | 0.1986 | 0.0483 | (0.0312,0.0655)
1.0000 | 0.1611 | 0.0393 | (0.0239,0.0547)
0.9920 | 0.1842 | 0.0475 | (0.0306,0.0643)
1.0000 | 0.1529 | 0.0388 | (0.0236,0.0540)
0.9925 | 0.1750 | 0.0468 | (0.0302,0.0635)
1.0000 | 0.1455 | 0.0383 | (0.0233,0.0533)
0.9929 | 0.1667 | 0.0463 | (0.0298,0.0627)
1.0000 | 0.1404 | 0.0379 | (0.0230,0.0528)
( )
( )
( )
( )
( )
( )
( )
( )
( )

UHaul _Truck

CARC_Green_Panel

Scud_B_Missile

Scud_B_Decoy

Lance_Missile

0.9932 | 0.1609 | 0.0458 | (0.0295,0.0621
1.0000 | 0.1014 | 0.0381 | (0.0243,0.0520
0.9879 | 0.1091 | 0.0450 | (0.0300,0.0600
0.9968 | 0.0828 | 0.0364 | (0.0234,0.0494
0.9871 | 0.0890 | 0.0427 | (0.0286,0.0567
0.9614 | 0.0372 | 0.0447 | (0.0330,0.0565
0.9571 | 0.0443 | 0.0515 | (0.0389,0.0641
0.9559 | 0.0356 | 0.0493 | (0.0374,0.0611
0.9470 | 0.0396 | 0.0571 | (0.0444,0.0698

M50_Tank

M752_Launcher

MAZ543_TEL

MAZ543_Decoy

| | | | | | | | | | | | | | | | | | | |

Table 11. Variation in performance metrics as the target set is expanded to include
the entire test set, using the normalized spectral radiance wavenumber
moment 1 as a classification feature.

the target set. Furthermore, the false alarm rate continues to fall as the target set
is expanded, since the inclusion of successive targets does not induce a significantly
larger number of false alarms. This fact implies that the target distribution remains
relatively constant as the target set is increased. While the normalized spectral
radiance wavenumber moment 1 feature provides for significant class separability, it
is not highly sensitive to target variations, making it an attractive feature to use for

classification.
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4.7 Target Configuration Sensitivity

Section 3.2 discussed the target configuration variations that are present in the
symptom slew data set. Throughout the five days of data collection, the targets were
placed in the open, obscured by the tree-line, moved further from the sensor, and
observed in an operating state (engines turned on). These configuration variations
are sure to introduce subsequent variations in the radiance data and hence, variations
in the classification results when observations made in similar configurations are

grouped together.

To test the target configuration sensitivity of the Bayesian classifier employing
the normalized spectral radiance wavenumber moment 1 classification feature, the
symptom slew experiments were placed into four different sub-groups. The exper-
iments conducted on day one of testing, where all targets were placed in the open
with their engines turned off, were taken as being one subgroup. Likewise, the ob-
servations taken on day two (targets in clear and engines running) and day three
(some targets obscured by the tree-line) were each placed in a separate subgroup.
Those spectra collected on day four and day five of testing (targets in the clear and

distant from sensor) were placed together in the fourth subgroup.

The class-conditional PDF's associated with each of these subgroups were mea-
sured for the spectral data in the time interval between 8:00 a.m. and 6:00 p.m.
These PDFs were then used with the Bayesian classifier and classification testing

was conducted on each subgroup. Results from this testing are found in table 12.

The testing results from day one should be regarded as a baseline of classifica-
tion performance, as all targets were located in the open in a non-operational state.
As can be seen from the detection metrics, the probability of detection, having a
value of 95.22% for resubstitution testing (R) and 92.49% in leave-one-out testing
(L), is nearly equal to the probability of detection attained for testing on the entire
unobscured observation set (see section 4.2.1). The probability of detection on day

two improves significantly, as the targets observed during testing were placed in an
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95%

Observation Target Confidence
Subgroup Configuration | Test | Py FAR P, Interval
Day 1 targets in clear | R | 0.9522 | 0.0822 | 0.0857 | (0.0600,0.1114

engines off L ]0.9249 | 0.1424 | 0.1473 | (0.1147,0.1798

( )

( )

Day 2 targets in clear | R | 0.9873 | 0.0158 | 0.0196 | (0.0069,0.0323)
engines on L ]0.9873 | 0.0744 | 0.0632 | (0.0409,0.0854)

Day 3 some targets R ]0.6907 | 0.1079 | 0.2640 | (0.2304,0.2977)
obscured L 10.6704 | 0.1490 | 0.3005 | (0.2655,0.3355)

Day 4 and 5 | targets in clear | R | 0.9730 | 0.0323 | 0.0301 | (0.0126,0.0477)
on distant hill | L | 0.9405 | 0.0333 | 0.0466 | (0.0250,0.0682)

Table 12.  Classification sensitivity to changes in target configuration using normal-
ized spectral radiance wavenumber moment 1 as a single classification
feature.

operational state, with the engines providing an internal source of heating for the
target surfaces. Once again, on days four and five, the detection probabilities are

similar to those obtained on day one.

The results obtained with the spectral observations collected during tests on
day three, however, reflect significantly decreased classification performance. Recall
that during these data collections, both the MAZ543_TEL and the M752_Launcher
targets were placed within a wooded area at the target deployment site, thus being at
least partially obscured by the surrounding tree canopy and providing a low-contrast
radiant enviroment. As witnessed in the results of table 12, the probabilities of target

detection dropped from around 95% to between 67.04% (L) and 69.07% (R).

The effects of obscuration on classification performance can be more fully un-
derstood by further dividing the subgroup of observations made on day three of the
symptom slew data collection. Since the only targets obscured by the tree canopy
on day three were the MAZ543_TEL and the M752_Launcher targets, the spectral
observations associated with these targets were placed in a separate test set from
the rest of the day three spectra. These sub-divisions of the data were classified

independently and the results are presented in table 13.
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Spectral 95%
Observations Confidence
Tested Test P, FAR P. Interval
Obscured R ]0.6700 | 0.2196 | 0.3002 | (0.2605,0.3399)
L ]0.6094 | 0.2702 | 0.3567 | (0.3153,0.3982)
Unobscured | R | 0.9452 | 0.0676 | 0.0497 | (0.0273,0.0721)
L ]0.9452 | 0.1375 | 0.0829 | (0.0545,0.1113)

Table 13. Classification results obtained on obscured versus unobscured targets
during day three of symptom slew data collection.

These results demonstrate that the performance achieved in testing the unob-
scured targets during day three are consistent with the performance for similar sets
of data. For the obscured targets, however, the performance is significantly reduced,
with low probabilities of detection and high error rates being realized. Thus, it is
apparent that the effect of tree canopy obscuration on the radiant environment of

the target can significantly reduce classification performance.

4.8 Diurnal Sensitivity

In the testing results reported thus far, the time interval between 8:00 a.m.
and 6:00 p.m. was the standard testing interval from which spectral observations
were calculated. It has been demonstrated that the normalized spectral radiance
wavenumber moment 1 feature provides for a high level of class separability. At
this point, it is an easy task to evaluate the class separability achieved using this
feature at intervals throughout the entire period over which observations were made.
This analysis is accomplished by dividing the total period of target observation into
smaller time increments and constructing class-conditional PDF's within each of these
intervals to be used in the Bayesian classifier. The spectral observations within each
time interval may then be classified according to the standard methodology and the

performance may be assessed through standard metrics.

In the symptom slew unobscured data set, the earliest observations of targets

were made no earlier than 2:00 a.m. and no later than 4:00 p.m. Furthermore,
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95%
Time Confidence
Period Test P, FAR P, Interval

2:00-4:00 a.m. R ]10.7635 | 0.1484 | 0.2412 | (0.2075,0.2748)
L }0.7340 | 0.1902 | 0.2862 | (0.2507,0.3217)
4:00-6:00 a.m. R ] 0.7150 | 0.0738 | 0.2198 | (0.1881,0.2516)
L |0.6960 | 0.0844 | 0.2366 | (0.2041,0.2692)
6:00-8:00 a.m. R 10.7170 | 0.1128 | 0.2332 | (0.2011,0.2652)
L |0.6882 | 0.1534 | 0.2720 | (0.2383,0.3058)
8:00-10:00 a.m. R 10.9736 | 0.0537 | 0.0509 | (0.0342,0.0676)
L |0.9736 | 0.0837 | 0.0719 | (0.0523,0.0914)
10:00 a.m.-12:00 p.m. | R | 0.9771 | 0.0058 | 0.0177 | (0.0068,0.0286)
L ]0.9685 | 0.0059 | 0.0230 | (0.0106,0.0354)

Table 14. Variation of performance metrics during each two hour period between
2:00 a.m. and 12:00 p.m. for the symptom slew unobscured data set,
using normalized spectral radiance wavenumber moment 1 as a classifi-
cation feature.

only a small number of target observations were made after 12:00 p.m. (less than
20) and hence, any results obtained on such a small number of observations have
little meaning. Thus, in order to test the time sensitivity of the normalized spectral
radiance wavenumber moment 1 feature, the interval between 2:00 a.m. and 12:00
p-m. was broken down into five periods of two hours each. In each of these intervals,
the observations were distributed in a fairly even fashion, such that in any two
hour interval, approximately 350-400 target and 200-250 non-target observations
were available for testing. Observation counts on this order provide for enhanced
statistical significance of the subsequent distribution functions and the resultant
classifier performance metrics. The performance metrics for each two hour interval

are shown in table 14.

As in indicated in table 14, the probability of detection between the hours of
2:00 a.m. and 8:00 a.m. remains fairly constant between 70-75%. After 8:00 a.m.,
however, performance improves in a statisically significant fashion, with a probability

of detection near 97% throughout the remaining hours of the morning. While only
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limited data was available after 12:00 p.m., results from previous data collection
analysis indicates that this level of performance would hold throughout the remainder
of the daylight hours. These results imply that the success of the normalized spectral
radiance wavenumber moment 1 feature depends upon the condition of either internal
or external heating of the target surfaces such that those surfaces remain out of
equilibrium with the surrounding atmosphere. Also implied by these results is that
the surfaces need not be heated extensively before a high level of discrimination
from natural objects is achievable. The data supports the conclusion that this feature
would work well for detecting non-operating targets well after sundown and operating

targets around the clock.

4.9 Mean Contrast Sensitivity

The previous two sections have dealt with the sensitivity of classification per-
formance to target configuration and diurnal environment changes. Because there
are many complex processes affecting the actual spectral emission of the targets
under these varying conditions, the discussion presented has used mainly qualita-
tive descriptions of the factors which actually lead to the sensitivities observed. It is
possible, however, to quantify the effect of many of these factors in terms of a widely-
used metric in infrared radiometry. This metric is commonly referred to as mean
contrast. Often employed when dealing with infrared images, this metric seeks to ex-
press the ‘observability’ of a target as compared to its background. Mathematically,

mean contrast, C, may be defined as:

~ [ [{5) — (LX)

t
- DAL VALY, 33
v (LY (T (33)

where (L§) and (L}') are the average spectral radiance associated with concurrent
target and non-target observations, respectively. In this case, the averages are taken
over a set of spectral observations, with the mean value of this set at each wavelength

defining the average spectral radiance.
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Figure 16. Sensitivity of total probability of error to observed mean contrast.

Using all experiments available in the symptom slew data set, tests of the
classifier were conducted employing the normalized spectral radiance wavenumber
moment 1 classification feature, with the mean contrast being computed for sets of
observations associated with each experiment. Performance metrics for the classi-
fication processing on these observations were also computed. This data was used
to produce the performance points shown in figure 16. In this figure, the error bars
associated with each value of total probability of error represents the 95% confidence

interval on that error rate.

The sensitivity results presented in figure 16 demonstrate that the observed
target-to-background mean contrast behaves as a reasonable predictor of classifi-
cation performance. The total error rate appears to vary with mean contrast in

an intuitive sense, with increased performance levels being realized with increasing
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contrast. As witnessed by this data, the error rate increases rapidly as the mean
contrast drops below 0.1. It is also apparent from the these results that many of the
experiments conducted in the symptom slew data collection effort can be accurately

characterized as yielding ‘low-contrast’ spectral observations.

It is important to point out that while there is a definite relation between
the total probability of error and the observed mean contrast, the classification
performance cannot be completely parameterized in terms of mean contrast only.
A parametric description of the classification performance achieved would have to
include other variables as well. Thus, mean contrast should be used only as an

indicator of the expected performance of the Bayesian classifier employed here.

4.10  Ambient Temperature Estimation Sensitivity

The effect of normalization on feature performance was presented in section
4.3. As the analysis showed, the atmospheric normalization technique employed by
many of the classification features has a significant impact on their performance
when compared to their non-normalized counterparts. In fact, in no case was a non-
normalized feature ranked higher in classification performance than its normalized

form (see table 2).

The success of this atmospheric normalization technique lies in the system’s
ability to estimate the temperature of the atmosphere surrounding the target. With
the data available in the JMSP database, this could be done reliably by simply sam-
pling the spectrum near a strong atmospheric absorption line. This method yielded
a reasonable estimate of the ambient temperature due to the fact that the sensor
was located only a few hundred meters from the targets. Hence, the atmosphere
surrounding the sensor was at roughly the same temperature as the atmosphere
surrounding the targets being observed. Keep in mind that due to atmospheric ab-
sorption, the emission observed near an atmospheric absorption line comes from the

atmosphere within a few meters of the sensor.
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In general, when operating from an airborne or space platform, the ambient
temperature at the surface must be estimated. To explore the sensitivity of the
normalized spectral radiance wavenumber moment feature to errors in the estimate
of ambient temperature, deterministic errors were introduced to the ambient tem-
perature estimation obtained through spectral sampling at 6.29 ym. The induced
errors were quantified as a percentage of the estimated temperature (relative error
= absolute error/ambient temperature estimate), and classification processing was
performed with these errors present in the ambient temperature estimate. The re-
sulting Bayes error rate (bound by the R and L curves) as a function of the relative
error in the temperature estimate is displayed in figure 17 for relative errors from

-3% to +3%, corresponding roughly to -10K to +10K absolute temperature error.

As is seen in figure 17, the error curve is not symmetric about the zero rel-
ative error point, with larger error rates being produced for large negative relative
errors in the estimate than for the corresponding positive values. Furthermore, the
minimum error is not precisely centered about zero, indicating that the method of
ambient temperature estimation employed (spectral sampling) may itself be biased.
Nevertheless, these results indicate that if the Bayes error rate is to be kept to
less than 10%, then the relative ambient temperature estimate must be 1% or less.
This roughly corresponds to an absolute tolerance within 3K of the actual ambient

temperature.

4.11  Summary

This chapter has been used to present the performance results achieved by a
Bayesian classifier employing the set of classification features developed as part of
this research effort using spectral-only infrared radiance data. The sensitivity of the
top performing feature to several factors that result in real-world data variability has
also been investigated. These results have been analyzed and the principle discoveries

are summarized in the list that follows:
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PARZEN: Normalized Spectral Radiance Wavenumber Moment 1: 9.097 — 11.08 microns
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relative error in ambient temperature estimation

Ambient temperature estimation sensitivity of Bayes error rate for test-
ing on symptom slew unobscured data set for normalized spectral radi-
ance wavenumber moment 1 feature.

o Testing results obtained using each of the classification features separately

indicate that the top-ranked single feature is the normalized spectral radiance

wavenumber moment 1, which yields a total error rate of around 5% with a

probability of target detection near 95%, and an associated false alarm rate of

4%. Comparison of total error rates produced by the Bayesian classifier with a

corresponding Bayes error estimate obtained through Parzen window density

estimation demonstrates that the classifier developed here is operating in a

near-optimal fashion.

o Atmospheric normalization of classification features significantly improves the

performance of those features over their non-normalized counterparts. For
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instance, the Bayes error rate associated with the spectral radiance at 7.49 um
drops from 28% to approximately 7.5% when this feature is normalized by

estimating the ambient temperature surrounding the targets being observed.

Multiple feature combinations were also employed, both with and without the
assumption of feature independence. While combinations of two features en-
hance performance (increasing Py by 1-2%), using more than two features was
not demonstrated to be beneficial. In fact, when using three features under
the assumption of feature independence, the false alarm rate increased while
the probability of target detection remained nearly constant. In no case was
statisically significant performance improvement obtained. Using two features
jointly (measuring the joint PDFs) produced improved performance over the
same feature combinations when assumed independent. Sensitivity of the PDFs
to leave-one-out methods, however, result in a weaker bound of the Bayes error
rate. Thus, the results obtained to not make a compelling case for measuring
the joint PDFs over measuring the single feature PDFs and assuming feature

independence.

The sensitivity of classification performance to target set and target configu-
ration variations was examined. These analyses reveal that most targets may
be correctly classified at rates greater than 95% for all targets except the
M752_Launcher and the MAZ543_TEL, which exhibited correct classification
rates of 94% and 89%, respectively. When these targets were obscured by the
tree canopy, the detection performance fell off significantly being reduced from

over 90% to near 60%.

Testing revealed that detection performance for the target set as a whole was
reduced from near 95% after 8:00 a.m. to between 70-75% prior to 8:00 a.m.
The detection response to external heating, however, was rapid, with detection

rates greater than 95% observed in the time interval between 8:00-10:00 a.m.
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e To quantify the radiometric observability of the targets in the test set, mea-

surements of mean contrast were made for all experiments conducted in the
symptom slew data collection effort. These measurements appear to be strong
indicators of classification performance. The results of this sensitivity analy-
sis reveal that error rates less than 10% require mean contrast measurements

greater than 0.1.

The sensitivity of classification performance to errors in the ambient temper-
ature estimate used in feature normalization reveals that for the normalized
spectral radiance wavenumber moment 1 feature, absolute temperature accu-
racies of approximately 3K are required to keep the total classification error

rate below 10%.

These results, along with the theory and methodology presented in the previous

chapters allows many conclusions to be drawn. These conclusions and recommenda-

tions for further research are discussed in the following chapter.
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V. Conclusions

5.1 Introduction

The principle objective of this research was to quantify the probability of target
detection, false alarms rate, and total error rate that may be achieved through specific
automated classification processing of spectral-only infrared radiance data collected
from time-critical mobile targets. This objective was motivated by the need to search
wide areas in a timely fashion to discover the presence of these targets. Specifically,
the research was intended to demonstrate that spectral-only infrared measurements
could be used as a primary source of sensor data for target detection, and that
the false alarm rate associated with this detection is sufficiently low such that the
detection reports may be used as cues to another remote sensing system tasked with
rejecting those false alarms. In this mode, a system utilizing this directed vision

approach may be able to simultaneously produce high probabilities of detection

(Pi>90%) and low false alarm rates (F'AR<0.001 per square kilometer).

In Chapter I of this thesis, the description of the problem at hand, a summary
of the current knowledge, an outline of the scope, and the research approach were
presented. Chapter II was used to introduce the relevant theory associated with the
fields of radiometry and statistical classification. The methodology applied in this
work was laid out in Chapter III, along with definitions of the classification feature
set that was developed. Performance results and sensitivity analyses associated with
the classification process weré presented in Chapter IV. In the present chapter, the
research accomplishments are summarized and conclusions are drawn from this work.

Recommendations for future work in the area are also offered.

5.2 Summary of Developmental Activities and Research Advancements

The fulfillment of the objectives of this research required the development of

software to search the JMSP database for a particular set of spectral observations, to
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extract feature values from these spectra, compute class-conditional PDFs, perform
Bayesian classification, estimate the Bayes error rate for a set of observations, and
accomplish various types of sensitivity analysis. The resulting software system, which
is described in Appendix A, meets all of these requirements and was used and refined
extensively throughout the course of this work. Furthermore, the system provides

an infrastructure upon which other research efforts may be built.

Along with the development of the software to implement the database search-
ing, classification, and analysis tasks, a set of 11 generalized classification features
were developed. These features are generalized in the sense that they may be com-
puted in any waveband or at any wavelength and the performance of the resultant
specialized features may then be assessed. This feature set uses radiance measure-
ments at single wavelengths, multiple wavelengths, and integrated over certain wave-
bands. It also provides for alternative detection paradigms to the spectral correlation

exploitation techniques currently being employed for spectral-only target detection.

During this research, the concept of atmospheric normalization of spectral ra-
diance measurements was developed and implemented in creating many of the clas-
sification features in the established set. Atmospheric normalization uses knowledge
of the ambient temperature of the atmosphere surrounding a target being observed
in order to produce a feature value which ma;ximizes classification performance by

confining and separating target and non-target distributions.

5.3 Summary of Results Obtained

Classification tests conducted during the course of this research yielded a vari-
ety of performance results. Summarized here are the key results obtained using the

symptom slew data set:

o Single feature classification results were used to rank-order the feature list, with

the top-ranked single feature being the normalized spectral radiance wavenum-
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ber moment 1, which yielded a total error rate of around 5% with a probability
of target detection near 95%, and a false alarm rate of 4%. Parzen window
density estimation techniques confirm that the Bayes error rate for this set of

data using this feature lies between 3-5%.

Atmospheric normalization of classification features improved the performance

of those features significantly over their non-normalized counterparts.

Multiple feature combinations may be employed for the classification process,
both with and without the assumption of feature independence. Combinations
of two features enhanced performance (increasing P; by 1-2%), but using more
than two features was not shown to be beneficial. Additionally, the results
obtained do not make a compelling case for measuring the joint PDFs over

assuming feature independence.

Sensitivity analysis indicated that most targets present in the symptom slew
data set may be correctly classified at rates near 95%. When these targets
were obscured by tree canopy, the detection performance fell off significantly,

being reduced to around 65%.

Diurnal sensitivity analysis showed that a probability of detection of 70-75%
may be achieved before thermal crossover. After crossover, however, detection
rates increased rapidly and stayed at levels greater than 95% throughout the
remainder of the daylight hours.

The observed mean contrast was shown to be a reasonable indicator of clas-
sification performance. The results of sensitivity analysis revealed that error

rates less than 10% require a target mean contrast greater than 0.1.

While atmospheric normalization requires knowledge of the ambient temper-
ature, some level of error is tolerable. Sensitivity analysis demonstrated that

absolute temperature accuracies of approximately 3K are required to keep the




total classification error rate below 10% for the top-ranked classification fea-

ture.

5.4 Conclusions Drawn from Research

Spectral emissions from targets deployed in the field under the influence of a
wide range of environmental and operational factors are dominated by thermal emis-
sion resembling blackbody radiation. Spectral emissivity variations, however, pro-
duce spectral features that, although sometimes subtle, may be exploited in order to
provide class separability between targets and non-targets. In order to remove a large
component of variability in environmental factors affecting the radiance properties
of target and non-target objects, knowledge of the ambient temperature surround-
ing those objects must be garnered. This information may be used to normalize
spectral radiance features, which has been shown in this research to increase class

separability.

Classification testing reveals that for a set of approximately 1300 spectral mea-
surements, target detection rates of 95-97% are readily achieved during daylight
hours, with concurrent false alarm rates of 2.5-4%. Thus, for this set of measure-
ments, the non-imaging spectral infrared target detection scheme has been demon-
strated to meet the detection requirements for locating time-critical mobile targets.
Furthermore, the concurrent false alarm rates achieved do not appear to limit the
utility of such a sensor as the primary cuer in a directed vision system. Hence, an
imaging system receiving cues from this sensor may be employed in a secondary
mode to meet the overall false alarm rate requirements associated with time-critical

mobile target location and prosecution.

5.5 Recommendations for Future Research

Many of the generalized features developed in this research effort were spe-

cialized by applying them at certain wavelengths or within certain wavebands that
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produced reasonable class separation. This does not mean that the default spe-
cializations maximize the performance that may be achieved with these generalized
features. Future research should therefore look toward discovering the wavelengths or
wavebands at which these features produce a minimal total error rate. Furthermore,
the set of classification features that exists now is by no means exhaustive. Thus,
any future research conducted in this area would be well intentioned to implement

and test new features to augment the current set.

The data utilized in producing the results discussed in this thesis were measured
with a fully resolved target, meaning that the signal measured by the spectrometer
was coming from target material only. If a sensing system is to utilize spectral
signatures, there must be a trade-off between spectral and spatial resolution. Hence,
it is a reasonable conclusion that targets may occupy a sub-pixel space, producing a
spectral signature in which the target radiation is but a component. Thus, research
conducted in the future should approach the issue of sub-pixel target detection,
testing the adequacy of the established classification feature set for dealing with this
type of data.

While the problem at hand was a two-class problem in which it was desired to
classify all observations as being target or non-target, future research efforts should
be aimed at increasing the number of classes in the problem. In so doing, the
process may be regarded as moving from automatic target detection into the realm
of automatic target recognition, wherein the declaration of tank versus truck, for

instance, may be the goal.

From the results achieved in the current research, it is clear that spectral sig-
natures offer a great deal of information that is not available in spatially resolved
images. Furthermore, this information provides evidence of the physical radiative
properties of the object being observed. This information should be regarded as com-
plementary to the geometric radiance properties of the object that can be obtained

from spatially-resolved image data. The two types of data can be made to work in
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concert to indicate the class membership of the object being sensed remotely. With

the conclusions of this research in hand, an important step toward this goal has been

taken.




Appendiz A. Infrared Spectral Target Detector Software
A.1 Introduction

Much of the developmental work in this research effort centered around the
design and implementation of a classification software system to perform all tasks
associated with producing the results reported in this thesis. This software remains
a valuable tool for use in future work. Thus, it is important to outline here its
functionality and operation. In this appendix, the main functions of the software are
overviewed and key points involved in working with the classification feature set are

presented. In addition, the classification processing output products are discussed.

A.2 Main Menu Functions

To enter the detection software environment, the user must simply type ‘detect’
at the MATLAB prompt. Upon entering the software, a working directory must be
specified or the default working directory accepted. Once this has been done, the
system main menu will appear offering many functions. The functions, which can
be invoked by pressing their corresponding button on the main menu, are described

in the sections that follow.

A.2.1 Specify Working Directory.  This function permits the user to change
the working directory for the session. The working directory is the directory from
which files are read by the system as well as to where files are written. The system
assumes that this directory is located within the directory from which MATLAB was
initially called. If no directory name is specified, then the system uses a directory

called ‘default_working.’

A.2.2  Specify Printer Selection. With this function the user may specify
to which printer hard-copy output is to be directed. The printer name, exactly as

entered by the user, will be used in a MATLAB print -P command. If so desired,
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printing output may be directed to a file. To do this, the word ‘file’ must be entered
as the printer name. Once this specification is made, the system automatically

prompts the user for an output file name when a print command is issued.

A.2.3 Compute Class-Conditional PDFs.  Selecting this option will allow
the user to construct class-conditional PDFs from spectral observations in the JMSP
database. In doing this, the user must first specify the dimensionality of the PDFs (1-
D or 2-D) and then specify which features from the feature list are to be used. Upon
completion of the database search, after the user has entered the number of bins
to be used in each dimension of the PDF, the target and non-target distributions
are displayed. These distributions may be printed to hard-copy if so desired. To
make more efficient use of the histogram bins, the feature space may be cropped by
specifying limits in each feature dimension. After the PDFs have been constructed,

these measurements may be saved in a file for later use in classification processing.

A.2.4 Run Detection Algorithm.  Once this option is chosen, many param-
eters controlling the classification processing must be specified. Specifically, the user
must select what type of classification will be carried out (single feature, multiple
feature, etc.). After selecting the classification type, the user specifies the features to
be employed along with the name of their corresponding PDF file (saved earlier upon
constructing the PDF). Once the limitations of the database search are established,
classification processing proceeds through the experiment list until all occurrences
of the targets in the target list have been classified. At this point, the system au-
tomatically performs leave-one-out testing. The results are written to a file whose

name is specified by the user.

A.2.5 Non-Parametric Bayes Error Estimation. -~ Choosing this option from
the main menu allows the user to bound the Bayes error rate for a particular set of

data and classification features using k-nearest neighbor (£-NN) and Parzen window
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techniques. The user must therefore specify the limits in the value of k to be used
in the &-NN technique as well as the range of values to be used for A in the Parzen
technique. The number of points in this range of parameters must also be entered.
Direct use of the Parzen/k-NN code developed by Martin (10) is made in producing
the error results, which are displayed as a function of the parameter k (k-NN) and h
(Parzen). Indicated on these graphs in the minimum Bayes error estimate produced
in leave-one-out testing and the corresponding re-substitution value. The associated
error estimates are taken to be the R and L values of error bounding the Bayes error

rate.

A.2.6 Sensitivity Analysis.  Currently, the only type of sensitivity analysis
that has been automated in the system is that used in exploring the sensitivity of
the Bayes error rate to relative errors in the estimate of ambient temperature. The
range of relative error and the number of points in this range at which the sensitivity
is to be tested must be specified by the user. Additionally, the software allows the
user to control the Bayes error estimation by specifying ranges for the parameters &
and h. The software then calls the non-parametric Bayes error estimation routines

developed by Martin (10) for each point in the range of relative error values.

A.2.7  Quat. This option is used to escape from the system software,

returning the user to the MATLAB input environment.

A.3 Feature Menu and Feature Specialization

Throughout the operation of the detection software, the user is required to
specify the feature or features from the feature list to be used for classification. This
task is accomplished through the use of a menu that displays the names of each
feature. To select a feature, simply press its button on the menu. Once selected,
these generalized features must be specialized in terms of wavelength or waveband.

Depending upon which of the features is chosen, the user will be required to specify
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a set of specialization quantities for each feature. The defaults for these quantities
can be selected by pressing ‘enter’ at each prompt. When providing the system
with spectrum sampling numbers, those numbers must be from 1-728. Sample 1
corresponds to 698.1055 wavenumbers and sample 728 corresponds to 3502.0984

wavenumbers, with the samples being evenly spaced in wavenumber.

A.4 Database Searching and Search Specification

Many of the major functions of the detection software require that the JMSP
database be searched for spectral observations associated with a particular set of
targets and non-targets within a particular set of experiments. In the system, this
need is accommodated by the use of files called the target list and the experiment

list.

The target list consists of a set of target names, one on each line, exactly
as those names will appear in the ground truth files associated with the data. In
a separate column on the same line, a target class designator must be listed for
each target name. This designator may have either a value of 1 for targets or 0 for
non-targets. There is no limit to the number of targets or non-targets that can be

contained within a target list.

The experiment list contains two columns with one line per data collection
‘experiment’ whose spectral observations should be included in the search. An ex-
periment is a set of observations made within a 10-15 minute time interval during

-the data collection. The first column in the experiment list specifies the data set
to which the experiment belongs (e.g. symptom slew). The second column specifies
which experiment in that data set is to be considered in the search (e.g. d06nz5).
The database searching routines will expect to find all files associated with an ex-

periment in a directory dataset/experiment within the directory specified as the data

directory for the system.
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To further specify the limitations of the search, the user must also enter the
range of observation times which should be included. This is done by entering an
earliest and latest hour value into the system when prompted. The default values for
earliest and latest hours are 8 and 18, respectively. These hour designations require

use of a 24-hour clock. For instance, an hour value of 13 represents 1:00 p.m.

A.5 Detection Report

Upon completion of the classification processing, the results are written to a
file referred to as the ’detection report.” A name for this file must be entered upon
initiation of the processing or the default name (det_stats.out) must be accepted.
The file contains a detailed breakdown of the type of classification performed, fea-
tures utilized, target classification performance, experiment performance, feature
performance and agreement, and summary performance metrics for the set of obser-
vations processed. The report also details the number of spectra discovered during
the database search for each class. An example of the detection report generated
when processing the symptom slew unobscured data set with the normalized spectral

radiance wavenumber moment 1 feature is shown in figure 18.
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Figure 18. Example of target detection report generated by detection software.




Appendiz B. Symptom Slew Unobscured Test Set

Throughout the presentation of results in Chapter IV, extensive use is made of
the symptom slew unobscured test set. Listed in table 15 are the target names and
class designations contained in the target list for this data set. Table 16 gives a list

of the 107 experiments from which spectral observations were taken. The specific

Target Name Class
Scud_B_Missile
CARC_Green_Panel
Lance_Missile
UHaul_Truck
M35 _Truck
Scud_B_Decoy
M50_Tank
MAZ543 Decoy
M752_Launcher
MAZ543_TEL
Tree_Canopy

—_

O = b el e e e e e

Table 15. Target list utilized in classification processing of symptom slew unob-
scured test set

set of experiments included in a particular database search depends upon the time
limitations specified by the user when the search is initiated. The performance results
in Chapter IV, for instance, were generated using just those observations that were

made between 8:00 a.m. and 6:00 p.m.
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symptom slew/ | symptom slew/ | symptom slew/ | symptom slew/

al6npl f06mz3 e07npl 109nz5
a06np?2 f06mz4 e07np2 109nz6
a06np3 f06mz5 e07np3 109nz7
a06np4 g06npl e07np4 109nz8
a06npb g06np2 e07npb 109nz9
b06nsl g06np3 f07mz1 109nza
b06ns2 g06np4 f07Tmz2 109nzb
b06ns3 a0Tnpl f07mz3 i09nzc
b06ns4 a07np2 f07mz4 109nzd
b06nsH a07np3 f07mz5 j09ns1
c06nsl al7np4 h09nz1 j09ns2
c06ns2 a07npH h09nz2 j10nsl
c06ns3 b07ns1 h09nz3 k10nz1
c06ns4 b07ns2 h09nz4 k10nz2
c06nsH b07ns3 h09nz5 k10nz3
d06nz1 b07ns4 h09nz6 k10nz4
d06nz2 b07nsbH h09nz7 k10nz5
d06nz3 c07nsl h09nz8 k10nz6
d06nz4 c07ns2 h09nz9 k10nz7
d06nzb c07ns3 h09nza k10nz8
e06npl c07ns4 h09nzb k10nz9
e06np2 c07nsb h09nzc k10nza
e06np3 d07nzl h09nzd k10nzb
e06np4 d07nz2 109nz1 k10nzc
e06npH d07nz3 i09nz2 k10nzd
f06mz1 d07nz4 i09nz3 k10nze
f06mz2 d07nz5 109nz4

Table 16. List of experiments contained in the symptom slew unobscured test set
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